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Abstract

Autonomous driving technologies are becoming increasingly widespread, as
both vehicle configurations and usage scenarios continue to diversify. This
trend calls for control methods that address diverse control requirements by
effectively utilizing vehicle capabilities. Model Predictive Control (MPC),
which predicts future system behavior and selects optimal actions, is a promis-
ing approach for leveraging the performance of controlled systems. This study
aims to improve both the prediction and optimization aspects of MPC to en-
hance control performance and broaden its applicability. On the prediction
side, vehicle models are rationally simplified by incorporating physical char-
acteristics to reduce computational burden and support clearer formulation. On
the optimization side, a multi-objective control problem is decomposed hierar-
chically according to task priorities, alleviating the need for difficult trade-off
tuning and facilitating easier controller design. In navigation tasks involving
cluttered environments, the proposed method demonstrated more efficient and
smoother motion compared to conventional approaches.
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Chapter 1

Introduction

1.1 Background and Motivation

Mobility has greatly contributed to the progress of civilization. Not only has it enabled
humanity to access distant regions across the Earth, but it has also served as a driving
force for economic growth, cultural exchange, and humanitarian assistance by efficiently
transporting people and goods.

Autonomous driving intelligence represents a transformative advancement that signif-
icantly enhances the contributions of mobility. With no need for human operation, it re-
duces the burden of effort and time, enabling people to benefit from convenient and safe
transportation. Moreover, it allows mobility to extend beyond environments that are unin-
habitable for humans, facilitating exploration and utilization in extreme conditions such as
space, underwater, and hazardous zones. Improving autonomous control methods to fully
leverage the motion capabilities of mobility systems broadens their range of applications
and helps address the diverse needs of people around the world.

In this context, this dissertation focuses on developing motion planning and control
methods that can adapt to increasingly complex and flexible mobility platforms.

1.2 Diversifying Mobility Configurations and Difficulties
in Planning and Control

The diversification of mobility configurations has been driven by cumulative advances in
vehicle technology over the years. Among these developments, the increase in operational
degrees of freedom (DoF) ―the number of independently controllable axes―has had a
particularly direct impact on motion capabilities. The growing feasibility of high DoF ve-
hicles is driven by the miniaturization of electric motors and improvements in their torque
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(a) 2 DoF Vehicle [1] (b) 5 DoF Vehicle [2] (c) 8 DoF Vehicle [3]

Figure 1.1: Examples of vehicles with different degrees of freedom

capabilities. These advances have made it increasingly feasible to embed individual mo-
tors directly into each wheel, enabling the practical realization of in-wheel motor systems.
Conventional four-wheeled vehicles (e.g., 1.1a) typically have 2 DoF: front-wheel steer-
ing and longitudinal acceleration. By equipping each wheel with an in-wheel motor while
retaining front-wheel steering, vehicles can attain 5 DoF (e.g., 1.1b). The additional DoF
enable enhanced cornering performance and the ability to rotate in place. Furthermore,
Four-Wheel Independent Drive and Steering (4WIDS) vehicles (e.g., 1.1c), which allow
independent control of both the steering angle and driving force at each wheel, possess 8
DoF. Such configurations support not only in-place rotation but also omnidirectional trans-
lation, making them particularly suitable for navigating in narrow environments.

A fundamental characteristic of high DoF vehicles is the existence of multiple feasible
motion patterns for achieving a given objective. Consider parallel parking as an example
(Fig. 1.2): a 2 DoF vehicle must rely exclusively on turning maneuvers to reach the tar-
get position, necessitating repeated back-and-forth movements. A 5 DoF vehicle, while
capable of similar maneuvers, can achieve sharper turns by coordinating front-wheel steer-
ing with independent wheel torque control, thereby reducing the number of back-and-forth
movements. Additionally, it can rotate in place after reaching the target position. An 8
DoF vehicle further expands these capabilities by enabling lateral movements, providing
an even more diverse set of motion patterns for accomplishing objectives.

The multiplicity of feasible motion patterns for achieving a given objective introduces
both advantages and complexities. Vehicles with higher DoF can optimize secondary ob-
jectives while satisfying a primary goal. In parallel parking scenarios, these vehicles can
minimize travel distance while reaching the target position. This flexibility, however, cre-
ates a challenge: solutions that achieve the primary objective may not represent the optimal
motion pattern. Control algorithms must therefore identify the best solution among all fea-
sible motion patterns that satisfy the primary objective to fully utilize the capabilities of
high DoF vehicles.

2



2 DoF Vehicle 5 DoF Vehicle 8 DoF Vehicle

Higher degrees of freedom 
allow for multiple strategies

to achieve the same goal.

Figure 1.2: Diversity of parallel parking strategies enabled by increased degrees of freedom

1.3 Vehicle Control Architecture for Maximizing Mobility
Performance

1.3.1 Comparison of Control Methods for Nonlinear Vehicle Systems

What control methods are suitable for exploiting performance of diverse vehicle configu-
rations? Considering the need to handle nonlinear, multi-input multi-output systems, this
section examines four candidate approaches: Control Lyapunov Function (CLF), Model
Predictive Control (MPC), Reinforcement Learning (RL), and Imitation Learning (IL), an-
alyzing their respective advantages and limitations. A comparative overview is provided in
Table 1.1.

Control Lyapunov Functions (CLFs) establish a theoretical foundation for ensuring
stability in nonlinear control systems [4, 5]. CLFs focus on system stabilization rather
than exploiting performance capabilities. This approach has been successfully applied to
systems where stability is critical, such as multicopters and vehicles [6–8]. The primary
challenge of CLF-based methods stems from the need to identify system-specific control
Lyapunov functions. This requirement limits their applicability across diverse systems.
Recent advances have integrated CLFs with Control Barrier Functions (CBFs) to create
constrained quadratic programming formulations (CLF-CBF-QP), to improve safety con-
sideration while maintaining stability guarantees [9].

Model Predictive Control (MPC) is a control methodology that predicts future sys-
tem behavior and optimizes control actions accordingly [10–12]. The method offers broad
applicability across diverse systems and enables explicit handling of state and input con-

3



straints, although theoretical stability guarantees is challenging to establish due to the nu-
merical optimization process. MPC has demonstrated successful implementation across
various complex systems, including vehicles, quadruped robots, and humanoid robots [13–
15]. The optimality of control inputs is defined through the minimization of an objective
function, making MPC particularly suitable for fully exploiting the performance capabil-
ities of controlled systems. The primary limitations of MPC stem from its computational
complexity, which arises from the need to perform high-dimensional optimization based
on future state predictions. Additionally, the requirement for a mathematical model of the
controlled system for prediction purposes can present implementation challenges in certain
applications.

Reinforcement Learning (RL) enables controlled systems to learn optimal operational
policies through environmental interactions to maximize rewards [16, 17]. This approach
can be applied without prior knowledge of the system’s mathematical model, as learning
occurs through automated trial and error. The integration of deep neural networks has
significantly expanded RL’s capabilities and applications [18, 19]. RL has demonstrated
success across diverse domains, including legged robot locomotion [20], robotic manipula-
tion [21,22], control of quadruped robots with manipulators [23], and even manipulation of
deformable objects such as cloth [24]. A significant challenge in RL implementation lies in
the requirement for extensive trial and error, satisfying safety constraints on real systems at
an industry-applicable level difficult to achieve [25]. While simulation-to-real (sim-to-real)
approaches have been developed to address this challenge, they still face limitations when
the gap between simulation and reality is substantial [26].

Imitation Learning (IL) enables systems to learn operational policies by imitating recorded
expert demonstrations [27,28]. While not framed as an optimization problem with explicit
performance metrics, this characteristic allows IL to be applicable in scenarios where defin-
ing clear performance objectives is challenging. The method has demonstrated successful
applications in various domains, including vision-based manipulation [29], dexterous hand
manipulation [30], and autonomous driving [31, 32]. A significant limitation of IL lies
in its reliance on human-recorded expert data for training, which inherently restricts its
effectiveness in scenarios where human operators cannot achieve satisfactory performance.

Among the candidate control methods, MPC emerges as the most suitable approach for
exploiting the performance capabilities of diversifying mobility systems. While both MPC
and RL can achieve optimal solutions under arbitrary objective functions, safety considera-
tions are paramount for mobility applications involving human passengers on public roads.
Although constraint satisfaction has been investigated in RL frameworks [33, 34], MPC
offers superior practical applicability through its inherent ability to handle time-varying
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scenarios and explicitly enforce constraint satisfaction for both system states and control
inputs in the near future. The requirement for a mathematical model in MPC is mitigated
for mobility systems, as these systems have been extensively studied and well-documented
in the literature [35].

Table 1.1: Qualitative comparison of control methods for vehicle control

Method Performance
Optimality

Computation
Efficiency

Stability
Analysis

Constraint
Handling

Applicability
to Complex

Systems

CLF C A A B C
MPC A C B A B
RL A B C B A
IL C B C C A

1.3.2 Model Predictive Control (MPC)

Model Predictive Control (MPC) is a control methodology that computes optimal control
actions through prediction and optimization in real-time. The prediction process employs
a mathematical model of the controlled system, termed the prediction model, which fore-
casts future system states based on current state and future control inputs. The prediction
model projects the system’s behavior across a defined prediction horizon by simulating the
evolution of system states under various control input sequences. The optimization process
evaluates these predicted trajectories to determine the optimal control input sequence that
minimizes a specified performance metric. The evaluation of control performance is typ-
ically formulated as a scalar-valued cost function that maps both control input sequences
and corresponding state trajectories to a quantitative measure of system performance.

The application of MPC to mobility control requires careful design of its two fundamen-
tal components: prediction and optimization. The prediction and optimization components
are further elaborated in Sections 1.3.3 and 1.3.4, respectively.

1.3.3 Mathematical Modeling of Mobility Systems

To control mobility systems using MPC, it is necessary to predict the future behavior of the
target system under given control input sequences, which requires a mathematical model
of the vehicle.
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A common approach to modeling four-wheeled vehicles involves approximating them
as two-wheel systems. The Dynamic Bicycle Model [36, 37] represents a relatively pre-
cise dynamic model that accounts for tire slip and friction forces, enabling accurate repre-
sentation of vehicle behavior during high-speed operation. The Kinematic Bicycle Model
[36,37] offers a more simplified kinematic representation that neglects wheel friction, mak-
ing it suitable for modeling vehicle behavior during low-speed operation [38].

Using overly complex prediction models in MPC is undesirable. This approach in-
creases optimization difficulty and requires more physical parameters for prediction. There-
fore, it is desirable to use the simplest possible model while maintaining sufficient predic-
tion accuracy. Selecting appropriate prediction models based on the control scenario is a
practical approach, and the selection of vehicle prediction models is discussed in detail in
Chapter 3.

1.3.4 Multi-Objective Control Problem

Multi-objective control refers to a control methodology that aims to achieve multiple con-
trol objectives simultaneously. This approach is commonly required in practical applica-
tions, such as maintaining smooth motion while tracking a desired reference path.

The challenge in multi-objective control lies in the potential conflicts between differ-
ent control objectives, where achieving one objective may lead to suboptimal outcomes
for others due to inherent trade-offs. While the trade-offs between multiple performance
metrics have been studied extensively through Pareto optimality analysis [39–42], Pareto
optimality-based optimization becomes particularly challenging for real-time control ap-
plications especially when dealing with high-dimensional optimization problems due to its
computational complexity.

For multi-objective control in real-time, many studies adopts the approach of scalarizing
multiple task-related terms into a weighted sum within a cost function. While this approach
is computationally tractable and effective for systems with few control objectives, tuning
the weights becomes increasingly challenging as the number of objectives grows. The need
for autonomous driving control that exploits the performance potential of diversifying mo-
bility systems requires the simultaneous achievement of multiple objectives, necessitating
a more tractable multi-objective control framework.

A key idea of this dissertation is that while acknowledging the importance of soft bal-
ancing the task importance, enabling more explicit consideration of task priorities hier-
archically would make multi-objective control more tractable. This concept leads to the
proposal of Nullspace MPC, a novel optimization approach proposed in Chapter 5.
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1.4 Research Questions and Dissertation Structure

This dissertation addresses the central research question: [Main Q] How can autonomous
driving control be realized to exploit the performance potential of diversifying mobil-
ity systems?

The investigation follows a structured approach through several key questions. First,
[Q1] Which control method is suitable for achieving the research goal? is addressed
through a comprehensive literature review, which identifies Model Predictive Control (MPC)
as the most appropriate approach (Chapter 1).

The analysis then addresses [Q2] What improvements are needed for MPC?, re-
vealing two critical areas requiring enhancement: prediction and optimization aspects
(Chapter 1 and Chapter 2).

These aspects are further explored through two specific questions: [Q2-α] How can
practical prediction models be designed? (addressed in Chapter 3) and [Q2-β ] How can
the handling of multiple tasks be enhanced? (examined through an improved version of
an existing method in Chapter 4 and a novel approach in Chapter 5). The structure of this
investigation is summarized in Fig. 1.3.

This dissertation contributes to advancing research on harnessing the performance po-
tential of diversified mobility systems as mentioned in the main research question. Al-
though substantial progress has been achieved, several limitations remain. The limitations
and future research directions are thoroughly examined in Chapter 6.

7



Figure 1.3: Structure of the Research Questions
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Chapter 2

Preliminaries

© 2022 IEEE. Portions of this chapter first appeared in ”Obstacle Avoidance Control Based on
Nonlinear MPC for All Wheel Driven In-Wheel EV in Steering Failure,” Proceedings of the 2022

IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pp. 2863–2868,
2022 [43].

2.1 Chapter Overview and Contribution to Q2-α , Q2-β

This chapter provides the foundational knowledge required for a comprehensive under-
standing of the dissertation. Section 2.2 defines the coordinate frames used throughout the
dissertation. Section 2.3 presents an overview of Model Predictive Control (MPC), which is
a central methodology in this research. Section 2.5 introduces a representative study on the
application of MPC to 5 DoF vehicle control. This section serves as a basis for discussing
the necessary improvements to MPC required to address the main research question of this
dissertation.

2.2 Definition of Coordinate Frames

This section defines the coordinate frames used to express vehicle models and problem
formulations.

The following provides the definition of coordinate frames used in this dissertation.
Fig.2.1 shows the geometrical relationship among these coordinate frames. For a detailed
explanation of these coordinate systems, refer to [44]. The descriptions of Global Frame,
Base Frame, and Frenet-Serret Frame are given below.
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Figure 2.1: Geometrical Relationship Among Coordinate Frames

Global Frame

The cartesian coordinate system in a fixed inertial frame. The position vector in this frame
is defined as GP = [Gpx,

Gpy].

Base Frame

The frame fixed on the moving frame at the position of the center of gravity (CG) of the
car. The position vector in this frame is defined as BP = [Bpx,

Bpy]. The xG axis direction is
the same as the front of the vehicle.

Frenet-Serret Frame

The frame fixed on the moving frame at the nearest point on the reference path from the
car. The position vector is defined as FP = [Fpx,

Fpy]. xF axis aligns with the tangent of
the reference path and Fpx means the trajectory length from the origin. yF axis aligns with
the reference path, and Fpy value shows the lateral error between the car and the reference
path.

2.3 Model Predictive Control (MPC)

Model Predictive Control (MPC) is a control strategy that combines prediction of future
system behavior with optimization of control inputs at each time step. Fig.2.2 illustrates
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Figure 2.2: Overview of Model Predictive Control (MPC)

the basic concept of MPC. At each time step t, the controller solves a finite-horizon opti-
mal control problem to compute a sequence of control inputs and corresponding predicted
states. Only the first input in the sequence is applied to the system, and the process is re-
peated at the next time step t +∆t. This scheme, known as the receding horizon approach,
enables continuous feedback and allows the controller to react to disturbances and model
inaccuracies, thereby improving robustness and adaptability in dynamic environments.

The advantages and limitations of MPC are summarized below. MPC offers several
benefits over conventional control methods. It explicitly optimizes a cost function over a
finite horizon, enabling the computation of control inputs that minimize the specified cost.
A key advantage is its ability to handle constraints on both state and input variables, which
is generally difficult to achieve with traditional feedback control approaches. However,
MPC also has inherent drawbacks. It requires solving an optimization problem at every
control cycle, which can be computationally demanding, particularly for nonlinear or high-
dimensional systems. Furthermore, because the optimization is performed over a finite
horizon, analyzing and guaranteeing closed-loop stability can be challenging.

The general structure of a MPC problem is summarized below. At each time step t,
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the real system state x(t) is obtained through measurement or estimation, and used as the
initial condition for optimization. The controller predicts future states x̂(k | t) and computes
control inputs û(k | t) over a finite prediction horizon k = 0, . . . ,N, where k denotes the
step index within the horizon and t indicates the current time at which the optimization is
performed. The cost function J to be minimized consists of a terminal cost Φ(x̂(N | t)) and
a sum of stage costs L(x̂(k | t), û(k | t)) along the horizon. The optimization is subject to
discrete-time system state transition based on a prediction model f , as well as state and
input constraints. This general formulation is detailed in Eqs. (2.1)–(2.4).

Given

x̂(0 | t) = x(t), N ∈ N, ∆t > 0,

Φ : Rn→ R, L : Rn×Rm→ R,

f : Rn×Rm→ Rn (prediction model) (2.1)

Find

x̂(k | t) ∈ Rn, ∀k ∈ {1, . . . ,N},

û(k | t) ∈ Rm, ∀k ∈ {0, . . . ,N−1} (2.2)

Objective: Minimize Cost Function J

J = Φ
(
x̂(N | t)

)
+

N−1

∑
k=0

L
(
x̂(k | t), û(k | t)

)
∆t (2.3)

Subject to

x̂(k+1 | t) = f
(
x̂(k | t), û(k | t)

)
, ∀k ∈ {0, . . . ,N−1},

x̂(k | t) ∈ X, û(k | t) ∈ U, ∀k (2.4)

Various algorithms have been developed to solve the optimization problem formulated
above. Section 2.4 introduces representative algorithms classified into two categories:
Gradient-Based Algorithms and Sampling-Based Algorithms.

2.4 Optimization Algorithms

As MPC requires solving optimization problems in real-time, the role of optimization al-
gorithms is crucial in determining whether practical control can be achieved. If the com-
putation time exceeds the control period or if the optimization fails to converge, it directly
leads to control failure. Various optimization algorithms have been proposed, each with its
strengths and weaknesses. The controller designer must precisely understand the properties

12



of the optimization problem to be solved and select the appropriate algorithm. Numerous
optimization algorithms exist, and each has its own strengths and weaknesses. The se-
lection of an appropriate algorithm requires a thorough understanding of the optimization
problem’s characteristics.

This section classifies optimization algorithms into two main categories: Gradient-
Based Algorithms and Sampling-Based Algorithms. Section 2.4.1 introduces gradient-
based algorithms, while Section 2.4.2 presents sampling-based algorithms, along with their
representative methods and characteristics.

The optimization method SA-HQP proposed in Chapter 5 of this dissertation can be in-
terpreted as a framework that combines both gradient-based and sampling-based algorithms
to leverage their respective advantages. The content of this section serves as prerequisite
knowledge for understanding the framework.

2.4.1 Gradient-Based Algorithms

Gradient-based algorithms utilize gradient information to iteratively update the solution to-
ward the optimal point. Representative algorithms include gradient descent [45, 46], New-
ton’s method [45–47], C/GMRES [48], ADMM [49], and PANOC [50, 51].

Gradient-based algorithms demonstrate superior performance for convex and differen-
tiable optimization problems. These methods achieve rapid convergence and scale effec-
tively to high-dimensional spaces. On the other hand, these algorithms may converge to
local optima when applied to non-convex problems. The quality of the solution in such
cases exhibits strong dependence on the initial guess.

2.4.2 Sampling-Based Algorithms

Sampling-based algorithms generate multiple candidate solutions through random sam-
pling and evaluate them to find optimal or near-optimal solutions [52]. These methods
include Monte Carlo Model Predictive Control (MC-MPC) [53], Cross-Entropy Method
(CEM) [54], and Model Predictive Path Integral (MPPI) [55].

Sampling-based algorithms offer several advantages, including broad applicability to
non-convex and non-differentiable optimization problems. These methods exhibit lower
sensitivity to the choice of initial guess compared to gradient-based approaches, resulting
in reduced susceptibility to local optima. However, these benefits come at the cost of sig-
nificantly higher computational complexity, particularly when applied to high-dimensional
search spaces.
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Figure 2.3: Tire Load

2.5 Application of MPC to 5 DoF Vehicle

This section presents a standard application of Model Predictive Control (MPC) to a five-
degree-of-freedom (5 DoF) vehicle control system. The 5 DoF vehicle features independent
drive torque control for each wheel in addition to front-wheel steering. This configuration
enables vehicle turning through both steering angle control and wheel torque distribution.
The following demonstrates how MPC can effectively utilize this high degree of freedom
to achieve sophisticated control objectives. Additionally, this section addresses practical
challenges in MPC implementation from both prediction and optimization perspectives.

2.5.1 Mathematical Modeling of Vehicle Dynamics for Future Predic-
tion

In this section, a nonlinear full vehicle model [56] is introduced to predict the future states
of a 5 DoF vehicle. In the following, this vehicle model is derived using the frenet-serret
coordinate system shown in Fig.2.1. All definitions of the variables in the following are
shown in Table. 2.1.

First, assuming that the road surface is flat, the load on each wheel Fz∗∗ can be calculated
as follows:

Fz f l =
m f g

2
− mHax

2l
−

m f Hay

d f
, (2.5)

Fz f r =
m f g

2
− mHax

2l
+

m f Hay

d f
, (2.6)

Fzrl =
mrg

2
+

mHax

2l
−

mrHay

dr
, (2.7)

Fzrr =
mrg

2
+

mHax

2l
+

mrHay

dr
, (2.8)
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Table 2.1: Definition of Variables

Variable Definition Value [Unit]
Gpx,

Gpy X/Y axis of the Global Frame - [m]
Bpx,

Bpy X/Y axis of the Base Frame - [m]
Fpx,

Fpy X/Y axis of the Frenet-Serret frame - [m]
θF Yaw Angle between the Ref. Path - [rad]
β Slip Angle of Vehicle Body - [rad]
γ Yaw Rate of Vehicle Body - [rad/s]
δ Front Wheel Angle - [rad]
T Torque generated by a tire. - [Nm]

ρre f Curvature of Ref. Path - [m−1]
θre f Yaw Angle of the Ref. in Global Frame - [rad]
V Vehicle velocity - [m/s]
ax Longitudinal acceleration - [m/s2]
ay Lateral acceleration - [m/s2]
l f Distance from CoG to the Front Axle 1.04 [m]
lr Distance from CoG to the Rear Axle 1.56 [m]

d f ,dr Front / Rear tread 2.082 [m]
m Mass of vehicle body 1270 [kg]
Iz Inertia of vehicle yaw moment 1343 [kgm2]
H Height of CoG 0.540[m]
R Tire radius 0.3[m]

e, f Tire parameter coefficients 4.15, 855.0
g Gravitational acceleration 9.807 [m/s2]

CoG: center of gravity

where, m f = mlr/(l f + lr), ml = ml f /(l f + lr) and the definitions of the the variables are
shown in Table. 2.1. Next, each tire slip angle is derived from the geometric relationships
by

β f l = tan−1

(
V sinβ + l f γ

V cosβ − d f γ
2

)
−δ , (2.9)

β f r = tan−1

(
V sinβ + l f γ

V cosβ +
d f γ
2

)
−δ , (2.10)

βrl = tan−1

(
V sinβ − lrγ
V cosβ − drγ

2

)
, (2.11)

βrr = tan−1

(
V sinβ − lrγ
V cosβ + drγ

2

)
. (2.12)
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Figure 2.4: Four Wheel Model

The lateral and longitudinal forces generated by each tire are given by

Fy∗∗ =−(e ·Fz∗∗+ f )β∗∗ (2.13)

Fx∗∗ = T∗∗/R (2.14)

where, ** is replaced by the indices f l (front-left), f r (front-right), rl (rear-left), and rr

(rear-right) indicating each tire, respectively. e, f are parameters for expressing cornering
stiffness as a function of Fz∗∗, and R is a tire radius.

The state vector of the MPC controller for the vehicle is

x = [Fpy,θF ,V,γ,β ,ax,ay]
⊤, (2.15)

where the state equations for the state variables are given as follows:

dFpy/dt =V cosβ sinθF +V sinβ cosθF , (2.16)

dθF/dt = γ− ˙Fpxρre f , (2.17)

dFpx/dt =
V cosβ cosθF −V sinβ sinθF

1−ρre f
Fpy

, (2.18)

dV/dt = ay sinβ +ax cosβ , (2.19)

dβ/dt = (ay cosβ −ax sinβ )/V − γ, (2.20)

dγ/dt = (l f ((Fx f l +Fx f r)sinδ )+(Fy f l +Fy f r)cosδ )

+d f (Fx f r−Fx f l)cosδ )/2+d f (Fy f l−Fy f r)sinδ/2

− lr(Fyrl +Fyrr)+dr(Fxrr−Fxrl)/2)/Izz, (2.21)
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Note that the case of zero velocity cannot be calculated due to the 1/V term in Eq. (2.20).
Since it is impossible to obtain all the state variables at once from the equations, ax and ay

are taken from the previously given values. The derivatives of ax and ay are obtained by
assuming a first-order delay system. It is unlikely to cause practical problems if the time
delay Tdelay is small enough. Tdelay = 0.05s is used in this study.

ãx =
1
m
(−Fy f l sinδ −Fy f r sinδ

+Fx f l cosδ +Fx f r cosδ +Fxrl +Fxrr) (2.22)

ãy =
1
m
(Fy f l cosδ +Fyrl cosδ

+Fyrl +Fyrr +Fx f l sinδ +Fx f r sinδ ) (2.23)
dax

dt
=

1
Tdelay

(ãx−ax) (2.24)

day

dt
=

1
Tdelay

(ãy−ay) (2.25)

This study uses time-state control [57] [58] to simply describe the location of obstacles.
Let ξ be the state variable, then the conversion of the time-axis state control is expressed
by the following chain rule.

dξ
dFpx

=
dξ
dt

dt
dFpx

=
dξ
dt

/
dFpx

dt
(2.26)

2.5.2 Formulation of Optimization Problem

Since the torque inputs for all four in-wheel motors and the front wheel steering angle can
be controlled independently, a 5 DoF vehicle is over-actuated and redundant. This section
formulates the optimization problem for MPC to determine the distribution of the driving
force for each tire and steering angle directly. In the case of applying the controller to a
real system, it is necessary for the in-wheel motors to follow the given torque commands.

The optimization problem solved in each control interval in MPC is formulated as fol-
lows, putting Fpx with s for the convenience of visibility,

Given

x̂(0 | s) = x(s) = [Fpy, θF ,V, γ, β , ax, ay ]
⊤,

xref = [0, 0,Vref, 0, 0, 0, 0 ]⊤,

S f , Q, R, R′, Cx, Cy, Cr, Nobj, Wobj, δmax, Tmax

Find
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x̂(k | s), ∀k ∈ {1, . . . ,N},

û(k | s) =
[
δ̂ (k | s), T̂f l(k | s), T̂f r(k | s), T̂rl(k | s), T̂rr(k | s)

]T
,

∀k ∈ {0, . . . ,N−1} (2.27)

Objective: Minimize Cost Function J

J = Φ(x̂(N | s))+
N−1

∑
k=0

L(x̂(k | s), û(k | s))∆s, (2.28)

Φ(x̂(N | s)) = 1
2(x̂(N | s)− xref)

⊤S f (x̂(N | s)− xref), (2.29)

L(x̂(k | s)) = 1
2(x̂(k | s)− xref)

⊤Q(x̂(k | s)− xref)

+ û(k | s)⊤Rû(k | s)

+(û(k | s)− û(k−1 | s))⊤R′(û(k | s)− û(k−1 | s))

+P(x̂(k | s)), (2.30)

P(x̂(k | s)) =
Nobj

∑
j=1

Wobj

(Fpx(k | s)−C jx)2 +(Fpy(k | s)−C jy)2 (2.31)

Subject to

x̂(k+1 | s) = x̂(k | s)+∆s · dx
ds

(2.32)

|δ |< δmax (2.33)

|Tf l|, |Tf r|, |Trl|, |Trr|< Tmax (2.34)

C2
r −
(
(px∗∗−C jx)

2 +(py∗∗−C jy)
2)< 0 (2.35)

where x(s) is a state vector defined by Eq. (2.15), S f , Q, R and R′ are the weight matrices.
J is the cost function to be minimized, which consists of stage cost L, terminal cost Φ, and
potential field penalty P. See Table.2.1 for the definitions of the variables.

Hard constraints (2.35) work to guarantee that the vehicle never collides with obstacles.
Moreover, the artificial potential field (APF) [59] added to the stage cost allow the vehicle
to drive keeping certain distances away from obstacles. Wobj in Eq. (2.31) is a parameter
that determines the level of influence of obstacles, and the value shown in Table.2.2 is used
in this study.

Note that ** indicates every four points of the vehicle body rectangle. It is assumed
that the vehicle does not collide if all of the four points are outside the circular areas of the
obstacles.
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Figure 2.5: Obstacle Avoidance Situation

2.5.3 Simulation Results of Obstacle Avoidance Scenario

Here, two types of simulation scenarios are presented. The first one (Section. 2.5.3.2) is
an obstacle avoidance task using both steer and each four tire torque, and the other one
(Section. 2.5.3.3) is emergency avoidance behavior in the case of a steering failure. The
full vehicle model (Section. 2.5.1) in the Global Frame is used as a simulator with the
assumption that the time delay is 0 s in following the reference value of torque generation.

2.5.3.1 Driving Scenario

The target task is set as obstacle avoidance as shown in Fig.2.5 in the simulation. The
vehicle tries to follow the given straight reference path as closely as possible while avoiding
two circular obstacles. The radius Cr and positions of the two obstacles (C∗x,C∗y) are
defined as follows.

Cr = 2.0 [m]

PA(CAx,CAy) = (10 [m],−1.5 [m])

PB(CBx,CBy) = (25 [m],1.5 [m])

The initial values of the state variables is,
x(0) = [Fpy,θF ,V,γ,β ,ax,ay] = [0.5,0.0,3.0,0.0,0.0,0.0,0.0]⊤. The parameters in Ta-
ble.2.2 are used in both cases with/without the steering input. The simulations were done
using the Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, RAM 24.0 GB. The optimization
problem was solved using PANOC [50], a fast algorithm suitable for real-time nonlinear
control applications. The control interval was set to 0.05 s, and as shown in Fig.2.6, both
scenarios achieved real-time computation with sufficient margin.
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Table 2.2: Common Parameters in Simulations

Control interval 0.05 [s]
∆t 0.05 [m]
N 50 [step]

Vref 6.95 [m/s] (25 [km/h])
Wobj 45.0 [-]

Table 2.3: Parameters in Simulation With Steering Input

S f diag [0,0,1,10−3,10−7,10−3,10−3]
Q diag [7.5,0.5,1,10−8,10−7,10−3,10−3]
R diag [0.0,10−5,10−5,10−5,10−5]
R′ diag [0.1,10−5,10−5,10−5,10−5]

δmax 30 [deg]
Tmax 1000[Nm]

Table 2.4: Parameters in Simulation Without Steering Input

S f diag [0,0,1,10−3,10−7,10−3,10−3]
Q diag [7.5,0.5,1,10−8,10−7,10−3,10−3]
R diag [0,5×10−8,5×10−8,5×10−8,5×10−8]
R′ diag [0.1,10−4,10−4,10−4,10−4]

δmax 0 [deg]
Tmax 1000[Nm]

Figure 2.6: Computation Time
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2.5.3.2 Obstacle avoidance simulation with steering input

First, obstacle avoidance with steering input is tested using the parameters listed in Ta-
ble.2.3. In this scenario, the vehicle successfully avoided the obstacles. See Fig. 2.7a to
check the simulation result. Basically, the vehicle turned itself using steering input. The
torque inputs were mainly used to accelerate the car to follow the reference velocity. This is
because steering input has a greater influence on the vehicle motion, and is more effective
in reducing the penalty in terms of the cost function. However, right tire torques are slightly
larger than left ones where the vehicle is right in front of the obstacle A. This means that
torque distribution also contributes to generate yaw-moment of the vehicle, especially in
severe situations where it is difficult to make a turn by steering input alone.

2.5.3.3 Obstacle avoidance simulation without steering input

Next, obstacle avoidance without steering input is tested setting parameters in Table.2.4.
The vehicle was successful in avoiding collisions even though steering input is always
zero as shown in Fig.2.7b. Comparing the results between Fig.2.7a and Fig.2.7b, much
higher torque input was needed to avoid collision without steering input. The vehicle’s
direction change through torque distribution represents a natural control approach. The
system demonstrates effective utilization of individual tire torques. The results indicate
successful obstacle avoidance through torque distribution control alone. Since the turning
performance is reduced when turning without steer, the closest distance from the obstacle is
smaller than in the case with normal steering input. The bottom figure in Fig. 2.7b is helpful
to grasp how the torque allocation contributes to the vehicle motion. If greater torque is
generated by the left tires, the vehicle receives a yaw moment causing it to turn right, and
the opposite is also true (See Fig.2.8.) The larger the difference in torque generated by the
left and right tires, the larger the rotational moment given to the car.
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(a) With Steering Input (b) Without Steering Input

Figure 2.7: Obstacle Avoidance Performance Comparison

Figure 2.8: Vehicle Turn with Torque Distributions
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2.6 Discussion and Insights on Q2-α , Q2-β

This chapter first provided an overview of Model Predictive Control (MPC), followed by a
case study involving its application to a 5 DoF vehicle control system. In the application to
5 DoF vehicle control, obstacle avoidance was achieved under both normal and steering-
failure conditions by maintaining the same control framework. In particular, during steering
failure, turning maneuvers were accomplished by independently controlling the in-wheel
motors installed on each wheel of the vehicle. This case demonstrates an example of how
MPC can exploit the performance potential of high-degree-of-freedom vehicles.

However, the universal applicability of this standard strategy to all types of vehicles
remains questionable. This issue should be addressed from both the prediction and opti-
mization perspectives.

Regarding prediction modeling, vehicle models based on Newton’s laws require the
specification of friction parameters (c.f. Eq. (2.14)) and cannot accommodate stopping
behavior (c.f. Eq. (2.20)), which imposes significant limitations on their practical appli-
cability. The development of simplified models that can achieve comparable control per-
formance is therefore desirable for practical implementation. Furthermore, it is essential
to systematically compare and evaluate the limitations of such simplified models. A dis-
cussion on the preparation and development of practical prediction models is provided in
Chapter 3, leading an insight into the Research Question Q2-α .

With respect to optimization, the adopted approach involved minimizing a scalarized
objective function, constructed by weighting terms corresponding to multiple tasks, using
a gradient-based method. This approach presents several challenges. Tuning of the balanc-
ing weights is inherently difficult for controller designers, and this difficulty increases as
the number of tasks grows, resulting in scalability issues. Furthermore, solutions to non-
convex optimization problems exhibit significant sensitivity to the initial guess. Given the
characteristic of high-degree-of-freedom vehicles to allow multiple strategies for achiev-
ing a given objective, non-convexity in the optimization problem is inevitable. Chapters 4
and 5 discuss approaches to address these challenges, and an insight to the Research Ques-
tion Q2-β is provided.
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Chapter 3

Comparison and Improvement of
Prediction Models for 2 DoF Vehicle
Path-Tracking

© 2021 IEEE. Portions of this chapter first appeared in ”Comparative Study of Prediction Models
for Model Predictive Path-Tracking Control in Wide Driving Speed Range,” Proceedings of the

2021 IEEE Intelligent Vehicles Symposium (IV), pp. 1261–1267, 2021 [60].

3.1 Chapter Overview and Contribution to Q2-α

This chapter investigates the appropriate design of prediction models for model predic-
tive control (MPC) in the context of 2 DoF vehicle path-tracking. Specifically, the study
formulates a path-tracking control problem for a 2 DoF vehicle using MPC and evaluates
tracking performance by switching the prediction model used in MPC for each experiment.
In addition to three existing prediction models, a novel model is proposed to address the
limitations identified in a conventional vehicle model. The comparative analysis demon-
strates that the path-tracking performance of each prediction model varies according to the
vehicle’s driving speed. The results highlight the importance of selecting prediction models
based on the driving speed range, and suggest that employing the most detailed model is
not always the best choice.

3.2 Background and Related Work

Path tracking is a crucial function for autonomous vehicles, and Model Predictive Control
(MPC) has emerged as a promising approach that has been extensively studied. The 2 DoF
vehicle represents a typical configuration for passenger cars, and has already been success-
fully implemented for path tracking in real-world autonomous driving demonstrations [61].
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The prediction model, which forecasts the future state of the controlled vehicle, sig-
nificantly influences MPC performance. Without accurate future predictions, selecting the
optimal action becomes difficult. Excessively complex models compromise practical im-
plementation through increased computational complexity in optimization and the require-
ment for numerous physical parameters that may be challenging to measure or estimate
accurately.

Several candidate vehicle prediction models exist for MPC-based path tracking, but
their appropriate selection criteria have not been thoroughly validated. The candidate mod-
els include the Kinematic Ackermann Model (KAM), Kinematic Bicycle Model (KBM),
and Dynamic Bicycle Model (DBM) [36, 37]. These models represent relatively simple
formulations of vehicle motion, each based on different underlying assumptions. Since
these assumptions are significantly influenced by vehicle speed, the most suitable model is
expected to vary depending on the driving speed range [62].

This chapter focuses on two main aspects of vehicle prediction models for MPC-based
path tracking: (1) performance evaluation of existing models and (2) proposing a new
model that improves a weakness of an existing model. Evaluation results demonstrate that
driving speed is a significant factor in selecting the appropriate model. In addition, the
proposed Dynamic Bicycle Model improved in Low-speed range(DBM-L) further extends
DBM’s applicability to low-speed driving.

3.3 2 DoF Vehicle Prediction Models for Path-Tracking
Control

3.3.1 Definitions of Variables

Before introducing the target vehicle models, the variables and parameters used to describe
the models are defined in Table 3.1. The coordinate frames used in vehicle models are
defined in Fig.2.1 in Chapter 2, which includes the Global Frame, Base Frame, and Frenet-
Serret Frame.

3.3.2 Kinematic Ackermann Model (KAM)

The first model tested in this study is Kinematic Ackermann Model (KAM). In conditions
where the car turns along the stable circle at low speed, the Ackermann Geometry [37]
(Fig. 3.1) exists in the Global Frame assuming no wheel slipping in the lateral direction.
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Table 3.1: Definition of Variables

Variable Definition Value [Unit]
β Slip Angle of Vehicle Body - [rad]

β f ,βr Slip Angles of Front, Rear Wheel - [rad]
θF Yaw Angle between the Ref. Path - [rad]

γyaw Yaw Rate of Vehicle Body - [rad/s]
δ Front Wheel Angle - [rad]

ρre f Curvature of Ref. Path - [m−1]
θre f Yaw Angle of the Ref. in the Global Frame - [rad]
Bvy Vehicle Lateral Velocity in the Base Frame - [m/s]
V Vehicle Velocity - [m/s]
a Vehicle Acceleration - [m/s2]
l f Distance from CG to the Front Axle 1.04 [m]
lr Distance from CG to the Rear Axle 1.56 [m]
m Mass of Vehicle Body 1110 [kg]
Iz Vehicle Moment of Inertia 1343 [kgm2]
K f Cornering Stiffness of Front Wheel 56023[N/rad]
Kr Cornering Stiffness of Rear Wheel 37942[N/rad]

CG: center of gravity

From geometrical relationship,

ρ = (l f + lr)/δ , (3.1a)

γyaw =V/ρ = δV/(l f + lr), (3.1b)

β = lr/ρ = δ lr/(l f + lr). (3.1c)

For path tracking, KAM is transformed into Frenet-Serret frame as follows:

d
dt

xKAM =
d
dt

[ Fpy θF
Fpx V

]⊤

=


V θF +

lr
(l f + lr)

V δ

−ρre fV +
1

(l f + lr)
V δ

V
a

 . (3.2)

Note that the simple point mass model is used to express the simple longitudinal dynamics
of the car in Eq. (3.2).
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Figure 3.1: Kinematic Ackermann Model

3.3.3 Kinematic Bicycle Model (KBM)

The motion of the car at low speed can be described as Kinematic Bicycle Model(Fig. 3.2)
in an inertial frame. Driving speed in the Global Frame can be written as follows:

˙Gpx =V cos(θG +β ), ˙Gpy =V sin(θG +β ), (3.3a)

θ̇G =
V
lr

sinβ , β = tan−1
(

lr
l f + lr

tanδ
)
. (3.3b)

For path-tracking control purpose, Eq. (3.3) is described in Frenet-Serret frame as follows:

d
dt

xKBM =
d
dt

[ Fpy θF
Fpx V

]⊤

=


V sin(θF +β )

V
lr

sinβ −
V ρre f

1−ρre f
Fpy

cos(θF +β )

V
1−ρre f

Fpy
cos(θF +β )

a

 . (3.4)
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Figure 3.2: Kinematic Bicycle Model

3.3.4 Dynamic Bicycle Model (DBM)

Dynamic Bicycle Model (DBM) is a well known lateral vehicle dynamics model in higher
speed range which considers the effect of wheel slip angles. The equations of DBM in the
base coordinate can be written as follows:

d
dt

[ Bvy
γyaw

]
=

[
−a11

V
a12
V −V

−a21
V

a22
V

][ Bvy
γyaw

]
+

[
b1
b2

]
. (3.5)

For path tracking, DBM can be described in Frenet-Serret coordinate as follows:

d
dt

xDBM =
d
dt

[
Fpy

˙Fpy θF θ̇F
Fpx V

]⊤

=



˙Fpy

−a11

V
˙Fpy +(a11 +a)θF +

a12

V
θ̇F

θ̇F

−a21

V
˙Fpy +a21θF +

a22

V
θ̇F

V
a


+E⊤ρre f +B⊤δ , (3.6)

where

a11 =
2(K f +Kr)

m
, a12 =−

2(K f l f −Krlr)
m

, (3.7)

a21 =
2(K f l f −Krlr)

Iz
, a22 =−

2(K f l2
f +Krl2

r )

Iz
, (3.8)

b1 =
2K f

m
, b2 =

2K f l f

Iz
, (3.9)

E =
[
0,ρre f (a12−V 2),0,a22−a,0,0

]⊤
, (3.10)

B = [0,b1,0,b2−a,0,0]⊤ . (3.11)
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Figure 3.3: Dynamic Bicycle Model

3.3.5 Dynamic Bicycle Model improved in Low-speed range (DBM-L)

DBM suffers from inapplicability when the vehicle speed V is close to 0 due to singularity
of the term 1/V in its formulation.

Therefore, we approximate the 1/V using soft normalization function [63] as Eq. (3.12),
and define DBM improved in Low-speed range (DBM-L) as Eq. (3.13) in order to improve
its behavior at extremely low-speed range. Fig.3.4 shows the visualization of Vinv compared
with 1/V .

Vinv =
1

V +α ln(1+ exp(−2αV ))
, (3.12)

where the constant α = 1.0 is used in this study. According to Eq. (3.12), Vinv equals
1/(α ln2) when V = 0. Therefore, as shown in Fig. 3.4, adjusting the parameter α changes
the intercept value. The parameter α must be positive, and decreasing its value causes Vinv

to more closely approximate 1/V .
Consequently, DBM-L can be described as follows:

d
dt

xDBM−L =
d
dt

[
Fpy

˙Fpy θF θ̇F
Fpx V

]⊤

=



˙Fpy

−a11Vinv
˙Fpy +(a11 +a)θF +a12Vinvθ̇F

θ̇F

−a21Vinv
˙Fpy +a21θF +a22Vinvθ̇F

V
a


+E⊤ρre f +B⊤δ . (3.13)
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Figure 3.4: Visualization of Vinv compared with 1/V

3.4 Formulation of MPC for Path-Tracking Control

This study examines how different prediction models affect path-tracking performance in
model predictive control (MPC). The MPC framework incorporates the prediction models
developed in Section 3.3, and their applicability is assessed through path-tracking perfor-
mance evaluation.

Figure 3.5 shows an architecture overview of the model predictive path-tracking con-
troller. The normal passenger car in Carsim software (Mechanical Simulation Corp.) in-
cluding a high-fidelity vehicle dynamics model is used as the control target. The optimiza-
tion problem is solved using the C/GMRES [48] method, an extremely fast gradient-based
approach suitable for real-time execution.

The optimization problem solved in each control interval is formulated as follows:
Given

x̂(0 | t) = x(t), xref ∈ Rn, N ∈ N, ∆t > 0,

S f ∈ Rn×n, Q ∈ Rn×n, R ∈ Rm×m (3.14)

Find

x̂(k | t) ∈ Rn, ∀k ∈ {1, . . . ,N},

û(k | t) =
[

δ̂ (k | t)
â(k | t)

]
∈ Rm, ∀k ∈ {0, . . . ,N−1} (3.15)

30



Figure 3.5: Path-tracking simulation architecture using MPC

Table 3.2: Parameters in Simulations

KAM, KBM DBM, DBM-L
∆t 0.01s 0.01s
N 100 100
S f diag[ 10, 10, 0, 10 ] diag[ 10, 1, 10, 1, 0, 10 ]
Q diag[ 1, 1, 0, 1 ] diag[ 1, 0.1, 1, 0.1, 0, 1 ]
R diag[ 1, 1 ] diag[ 0.1, 1 ]

Objective: Minimize Cost Function J

J = Φ
(
x̂(N | t)

)
+

N−1

∑
k=0

L
(
x̂(k | t), û(k | t)

)
∆t (3.16)

Φ
(
x̂(N | t)

)
=

1
2
(
x̂(N | t)− xref

)⊤S f
(
x̂(N | t)− xref

)
, (3.17)

L
(
x̂(k | t), û(k | t)

)
=

1
2
(
x̂(k | t)− xref

)⊤Q
(
x̂(k | t)− xref

)
+ û(k | t)⊤Rû(k | t) (3.18)

Subject to

x̂(k+1 | t) = x̂(k | t)+∆t · d
dt

xM, ∀k ∈ {0, . . . ,N−1} (3.19)

where x(t) is a state vector, S f , Q, R are weight matrices. The dimension of x(t) and weight
matrices differ depending on prediction models. The state equation d

dt xM (Eq. (2.32)) is
also replaced depending on the target vehicle model for the evaluation.
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Table 3.3: Driving speed and curvature for evaluation

vref [km/h] 5 10 20 30 40 50 60 80 100 120
R [m] 5 10 15 30 60 100 150 280 460 710

Figure 3.6: Visualization of tracking error definition

3.5 Evaluation

3.5.1 Evaluation metrics

In the path-tracking simulation on Carsim, a virtual car is controlled by MPC to follow the
reference paths shown in Fig.3.7 and 3.8. One of the vehicle models prepared in Section
3.3.1 is used as a prediction model of MPC. The parameters of MPC are shown in Table
3.2, which are manually tuned to achieve a good tracking performance, and the parameters
are different depending on the prediction model. Performance of path tracking is evaluated
by mean and maximum values of lateral tracking error as shown in Eq. (3.20), where L

is the total path length. The tracking error is defined as the area enclosed by the vehicle
trajectory and the reference path, divided by the total path length, as illustrated in Fig. 3.6.

Eave =
1
L

∫ L

0
|Fpy| dFpx, Emax = max|Fpy|. (3.20)

3.5.2 Driving conditions

In this study, 10 driving speed ranges listed in Table 3.3 (5[km/h] to 120[km/h]) are tested
for each prediction model in order to cover the daily driving scene including low-speed
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Figure 3.7: Oval-Shaped Path Figure 3.8: Step-Shaped Path

urban driving and highway driving.
Two test tracks are used to evaluate the path-tracking performance: (a). a half of oval

track (Fig. 3.7), called ”oval-shaped path”, and (b). a rectangular wave-like driving path
(Fig. 3.8), called ”step-shaped path”.

In (a), the curvature of the reference is changed depending on the driving speed as
specified in Table 3.3 for the oval-shaped path. The applied curvature corresponding to a
certain speed range is decided by referring to the standard of maximum curvature for road
construction in Japan. In (b), the reference path is in a stepping manner to evaluate the step
response performance of the path tracking.

3.5.3 Availability of models in various speed ranges

The experimental results are presented. Figures 3.9 to 3.12 show the control performances
of the MPC path tracking using different prediction models in various driving speeds. Note
that all depicted points show the cases the car was able to follow the path, and the points
are lacking if the car failed to track the path.

The experimental results (Figs. 3.9 to 3.12) demonstrate that the prediction models
show varying levels of tracking performance across different driving speeds. KAM and
KBM maintain feasible tracking accuracy only below 40 km/h on the oval-shaped path,
and below 50 km/h on the step-shaped path. In contrast, DBM and DBM-L can follow
both of the reference paths in all tested driving speed from 5 to 120 km/h. The difference
in these results stems from whether tire slip is considered in the model. KAM and KBM
do not account for tire slip, which leads to significant discrepancies between predicted and
actual vehicle behavior at high speeds where slip effects become more pronounced. This
mismatch ultimately causes the path tracking to fail at higher velocities.
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Figure 3.9: Eave of Oval-Shaped Path [m]
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Figure 3.10: Emax of Oval-Shaped Path [m]
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Figure 3.11: Eave of Step-Shaped Path [m]
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Figure 3.12: Emax of Step-Shaped Path [m]

Since DBM-L is approximately equivalent to DBM in the high-speed range, DBM-
L is available in a wide speed range as well as the conventional DBM. It is found that
DBM-L follows the tendency of the conventional DBM in the high-speed range from the
results. Thanks to the soft normalization of the 1/V term in DBM-L, the model prevents the
divergence of the computation in an extremely low-speed range successfully. As a result,
DBM-L enables path tracking from standstill, which is not possible with the conventional
DBM. Figure 3.13 shows the time profiles of the states in a oval-shaped path tracking with
5km/h starting from a stop state (V = 0 km/h).

As the summary of model comparison, Tab. 3.4 classified the evaluation of each model
regarding the availability and accuracy. If a vehicle is required to run in the full vehicle
speed range, the proposed DBM-L is the most applicable model among the tested models.
Although DBM-L shows the availability in all driving speed range, the tracking accuracy
of DBM and DBM-L are degraded in the low-speed range compared to KAM and KBM.
This result implies that KAM and KBM are more suitable for low-speed driving, especially
in the speed range of 0 to 30 km/h. Not only the tracking accuracy, KAM and KBM
has advantages in the real-world application that the model does not need any friction
coefficient or tire slip angle to be estimated.
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Figure 3.13: Simulation results using DBM-L model with initial velocity V = 0 km/h

Table 3.4: Evaluation of each vehicle model

Evaluation Items KAM KBM DBM DBM-L

Tracking
Accuracy

Low speed A A C B
Mid. speed C C A A
High speed D D B B

Ave. Calculation Time [ms] 0.219 1.011 1.684 0.573
Num. of Physical Parameters 2 2 5 5

The evaluations in the table are defined as follows:
A : High-accuracy tracking is possible in the speed range,
B : Tracking is possible in the speed range,
C : Tracking is possible only in a part of the speed range,
D : Tracking is impossible in the speed range.
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3.6 Discussion and Insights on Q2-α

This chapter evaluated how sensitive the path tracking performance of MPC is to selec-
tion of prediction models. This result provides insights on the research question [Q2-α]
How can practical prediction models be designed? for MPC to exploit the performance
potential of mobility systems.

In the low-speed driving scenarios, KAM and KBM exhibit superior performance de-
spite their simplified structure that neglects tire slipping effects compared to DBM and
DBM-L.

For high-speed scenarios, the use of DBM or DBM-L is essential since the performance
of KAM and KBM deteriorates significantly. While DBM enables motion prediction con-
sidering friction, it has a weakness of prediction failure at zero vehicle speed. DBM-L
achieves improvement by mathematical modification to suppress unstable prediction at
zero vehicle speed without compromising the original performance of DBM. In terms of
covering a wide speed range, this newly proposed model has the highest applicability.

These results suggest that selecting a detailed prediction model (DBM, DBM-L) is not
always the best choice, and the selection of the prediction model should be made consider-
ing its compatibility with the target application. Since vehicle speed significantly influences
tracking performance, prediction models should be chosen based on the target speed range
of operation. For autonomous vehicles designed to operate at low speeds on public roads,
using KAM or KBM not only provides satisfactory path tracking performance but also
offers practical advantages by eliminating the need to determine vehicle mass and tire fric-
tion parameters. These insights directly address [Q2-α], confirming that prediction model
design for MPC should be tailored to the vehicle’s operational context – favoring simpler
models at low speeds and more detailed models at high speeds. While DBM-L does not
achieve the highest accuracy at low speeds, it enables stable control across the full speed
range, making it the most widely usable model among those tested.
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Chapter 4

MPPI Controller as a Sampling-Based
Optimizer for Multi-Objective Control
via Weighted Scalarization in 8 DoF
Vehicle Navigation

© 2024 IEEE. Portions of this chapter first appeared in ”Switching Sampling Space of Model
Predictive Path-Integral Controller to Balance Efficiency and Safety in 4WIDS Vehicle

Navigation,” Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3196–3203, 2024 [64].

4.1 Chapter Overview and Contribution to Q2-β

This chapter presents an application of Model Predictive Path Integral (MPPI) control to 8
DoF vehicle navigation. The flexible motion capabilities of 8 DoF vehicles offer significant
potential for efficient navigation in dense obstacle environments. Achieving this potential
requires sophisticated control methods that can simultaneously process real-time obstacle
information for collision avoidance and maintain smooth steering operations. While previ-
ous research on 8 DoF vehicles has primarily addressed path following tasks, navigation in
obstacle-rich environments remains challenging. This study proposes a novel approach us-
ing MPPI, a sampling-based Model Predictive Control (MPC) method, to achieve smooth
and safe navigation in complex environments. The broad applicability of sampling-based
optimization enables a practical framework that can handle real-world navigation scenarios,
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including real-time obstacle detection from LiDAR point cloud data. This work represents
the first implementation of MPPI for 8 DoF vehicles, demonstrating effective navigation
performance. Regarding the relationship with Q2-β , this study explores the performance
capabilities of the weighted scalarization approach in multi-objective control. It serves as
a baseline for Chapter 5, which introduces enhanced optimization algorithms for improved
multi-objective control performance.

4.2 Background and Related Work

Four-wheel independent drive and steering (4WIDS) vehicles has 8 DoF and has high mo-
bility and flexibility. By enabling independent control of the drive torque and steering
angle at each wheel, 4WIDS systems support holonomic movements such as rotating in
place or moving diagonally. Compared to other holonomic platforms like omnidirectional
or mecanum-wheel robots, 4WIDS vehicles can better handle rough terrain and maintain
high-speed stability [65–67].

However, the enhanced mobility and flexibility of 4WIDS come at the cost of increased
control complexity. The system’s high-dimensional input space―8 DoF in total―makes
direct control challenging. Moreover, to avoid mechanical failure, steering commands must
be executed smoothly and in coordination across wheels.

Several approaches have been proposed to tackle the control problem of 4WIDS vehi-
cles. A common strategy is to reduce the system’s degrees of freedom by applying con-
straints. For instance, in [68], the front and rear steering angles are constrained to be mirror
images, allowing the application of the pure pursuit algorithm for path tracking. While this
method is computationally efficient and easy to implement, it limits the vehicle’s ability to
exploit its quick rotation and diagonal movement. Another class of methods adopts fuzzy
logic to handle the entire 4WIDS input space. These methods design multiple driving
modes that are switched based on context [69]. While effective in some target environ-
ments, such approaches require extensive domain expertise to define the modes and rules,
and the rules are not easily extendable to novel or unstructured environments. Control de-
signs based on Lyapunov stability theory [70] aim to ensure system stability under various
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conditions. Stable path tracking can be achieved based on theoretical guarantees, but con-
sidering other tasks such as smooth steering and obstacle avoidance is challenging for the
framework.

This study addresses these limitations by leveraging model predictive control (MPC),
which is well-suited for handling high-dimensional, constrained systems. By optimizing
control inputs over a prediction horizon, MPC offers a principled way to manage redun-
dancy while satisfying physical constraints and promoting smooth vehicle behavior. Our
approach aims to bridge the gap between maneuverability and practicality, advancing the
capabilities of 4WIDS control systems.

4.3 Navigation Scenario Description

The goal of our system is to navigate a 4WIDS vehicle to a given goal while avoiding
collision with surrounding obstacles (Fig. 4.1). We assume that a global planner generates
a reference trajectory, which is a sequence of positions and orientations in a 2D plane.
Therefore, the main focus of our study is to design a local planner that generates a vehicle
motion to follow the reference trajectory while safely avoiding obstacles. The local planner
sends an eight DoF vehicle command consisting of a wheel speed and a steering angle for
each wheel to the vehicle actuators. Especially in our navigation environment where the
obstacles are densely distributed, the high maneuverability of 4WIDS vehicles, such as
small turning radius and diagonal movement, is an important factor for achieving smooth
and efficient driving.

4.4 Modeling of 4WIDS Vehicle Motion

To achieve accurate vehicle control, it is important to understand the characteristics of
vehicle motion. In this section, we formulate the model of 4WIDS vehicle behavior, mainly
used for sampling future vehicle poses in our model predictive controller.
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Figure 4.1: Navigation task for a 4WIDS vehicle: the goal is to follow a reference trajectory
quickly and safely while avoiding dense obstacles.

Figure 4.2: Relationship between spaces; Dynamics(8DoF) can be simplified to Kinemat-
ics(3DoF) with assuming no tire slip. Two types of sampling space are tested in this study;
u3DoF and u4DoF to compare the navigation performance. Both spaces can be converted to
the vehicle command space uvehicle with conversion matrix Cn→8(n ∈ {3,4}) and nonlinear
projection fv.

4.4.1 4WIDS Vehicle Dynamics

Although it is a straightforward approach to model vehicle behavior using Newton’s laws of
motion, this study does not focus on this approach. To formulate the full vehicle dynamics,
it is necessary to consider the eight tire forces generated by the four wheels, as shown in
Fig.4.2. However, to obtain the forces, it is necessary to observe tire slip angles, tire slip
ratios, and tire physical parameters, which are not easy to measure accurately in real-world
applications [36]. Even if we have true dynamics and explore the full eight-dimensional
input space, most of the solutions will include large tire slips, which cause unstable vehicle
behavior. Therefore, predicting vehicle motion with full dynamics is not always practical,
especially for real-world applications.
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4.4.2 4WIDS Vehicle Kinematics

An efficient way to easily model the vehicle motion is to focus on vehicle kinematics [71].
Essentially, the difficulty of controlling 4WIDS vehicles comes from the redundancy of
the control degrees of freedom, which means that there are multiple solutions to achieve
a certain vehicle behavior. The kinematic formulation adds assumptions that the vehicle
is moving at a constant velocity, and the tire slip is negligible. The assumptions can be
interpreted as a reduction of the control input space and focusing on considering more
practical vehicle motion.

Under the kinematic assumptions, the vehicle’s motion can be simplified as a model
with 3 DoF u3DoF ; longitudinal velocity Vx, lateral velocity Vy, and angular velocity ω
of the vehicle center. The relationship between the vehicle center velocity u3DoF and the
eight-wheel velocities ufull is formulated as follows and shown in Fig.4.2.

u3DoF = [Vx,Vy,ω]⊤, (4.1)

ufull = [Vx f l,Vx f r,Vxrl,Vxrr,Vy f l,Vy f r,Vyrl,Vyrr]
⊤, (4.2)

ufull = C3→8 u3DoF, (4.3)

C3→8 =



1 0 −dl
1 0 dr
1 0 −dl
1 0 dr
0 1 l f
0 1 l f
0 1 −lr
0 1 −lr


. (4.4)

The wheel velocity ufull is converted to the vehicle command uvehicle. uvehicle consists of
the steering angle δ∗ and translational velocity V∗ for each wheel, where ∗ ∈ { f l, f r,rl,rr}
denotes the front-left, front-right, rear-left, and rear-right wheels, respectively.

uvehicle = [δ f l,δ f r,δrl,δrr,Vf l,Vf r,Vrl,Vrr]
⊤ (4.5)

The nonlinear transformation, denoted as uvehicle = fv(ufull), is defined by the following
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component-wise conversions for each wheel:

δ∗ = arctan2(Vy∗,Vx∗) (4.6)

V∗ =
√

V 2
x∗+V 2

y∗ (4.7)

Note that the kinematic formulation only requires the geometric relationship of the tires
which is easy to obtain, and is easily applicable to real-world applications.

4.4.3 Exploring Solution in Redundant Control Input Space

Sampling based controller needs to get a variety of solutions from the control input space
u3DoF. In this study, we found that exploring a slightly redundant space u4DoF and con-
verting it to u3DoF was more effective in achieving smooth and stable vehicle motion with
MPPI. This idea is inspired by methods such as Koopman Operator [72] and Dynamic
Mode Decomposition [73], which expand the state space to express the complex dynamics
as a linear system in a higher dimensional space.

Since u4DoF is a 4-dimensional redundant space, it does not always satisfy kinematic
constraints formulated in Eq. (4.3). Therefore, projection matrix C4→8 is used to map u′4DoF

to uvehicle, so that the sampled vehicle motion always satisfies the kinematic constraints.

u4DoF = [Vf l,Vrr,δ f l,δrr]
⊤, (4.8)

u′4DoF = f (u4DoF)

= [Vf l cosδ f l,Vrr cosδrr,Vf l sinδ f l,Vrr sinδrr]
⊤

= [Vx f l,Vxrr,Vy f l,Vyrr]
⊤, (4.9)

uvehicle = C4→8u′4DoF, (4.10)

C4→8 = C3→8C4→3, (4.11)

C4→3 =


dr

dl+dr

dl
dl+dr

0 0

0 0 lr
l f+lr

l f
l f+lr

−1
2(dl+dr)

1
2(dl+dr)

0 0

 . (4.12)

The conversion to reduce a dimention in Eq. (4.12) is based on the idea of taking the average
of the control inputs between front wheel space (Vf l,δ f l) and the rear wheel space (Vrr,δrr)
to obtain the compromised vehicle center angular velocity ω .
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Figure 4.3: Overview of the control architecture (See Section 4.5.1). (a) global planner
generates a reference trajectory based on current vehicle pose and the given map, (b)

MPPI generates the optimal control input in a reduced dimensional space, (c) the n DoF
(n ∈ {3,4}) control input is converted to the 8DoF vehicle command space, and (d) the

vehicle actuators execute the command.

4.5 Navigation Architecture for 4WIDS Vehicle

4.5.1 System Overview

The navigation system for the 4WIDS vehicle is composed of four main components below
in this work (See Fig.4.3)

State Observation

The map of the environment is given, and the vehicle localizes itself using 2D LiDAR point
cloud data and odometry information.

Global Path Planning

The global planner calculates a path from the current vehicle position to the goal using
Dijkstra’s algorithm.

Local Path Planning

In this work, a Model Predictive Path-Integral Controller (MPPI) is used to plan the local
path and calculate the next optimal control input. Since exploring the full vehicle command
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space which has 8 DoF is difficult and inefficient, MPPI samples solutions in a dimension
that is reasonably reduced by kinematic constraints such as u3DoF and u4DoF defined in
Section 4.4.

Vehicle Command Calculation

Since MPPI calculates the control input in a reduced dimension, the control input is con-
verted to the 8DoF vehicle command and sent to the vehicle actuators. The optimal control
input calculated by MPPI is converted to the 8DoF vehicle command and sent to the actu-
ators. The conversion is done by Eqs. (4.4), (4.12) and (4.7) in Section 4.4.

4.5.2 Algorithm of MPPI Controller

In this study, local planning is performed using the Model Predictive Path-Integral (MPPI)
Controller [74] shown in Algorithm 1. MPPI is an optimal control algorithm that uses a
sample-based approach to compute the optimal control input sequence in the near future.
The algorithm is based on the idea of sampling the control input sequences as normal distri-
butions centered at the previous optimal input sequence, and getting the optimal sequence
as weighted sum so that better sequences are heavily weighted and vice versa.

For a discrete-time, continuous state-action system xt = F(x,u), K samples of input
sequences V = {vt}T−1

t=0 are generated by adding Gaussian noise to mean control input
sequence U = {ut}T−1

t=0 with covariance matrix Σ. After preparing the samples, the optimal
control input sequence is easily obtained by calculating the weighted sum of the samples.
The stage cost function c(x,u) and terminal cost function ϕ(x) are defined to evaluate the
quality of the samples. Let Sk be the total cost of the k-th sample whose input sequence is
Vk, the weight for the sequence is

w(Vk) =
1
η

(
− 1

λ
S(Vk)+λ

T−1

∑
τ=0

u⊤t Σ−1vt−ρ

)
(4.13)

η =
K

∑
k=1

exp

(
− 1

λ
S(Vk)+λ

T−1

∑
τ=0

u⊤τ Σ−1vτ −ρ

)
(4.14)

where η is the normalization factor, λ is the constant temperature parameter, and ρ is the
minimum cost among the samples.
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The notable benefits of MPPI are that it can be applied to a wide range of optimization
problems such as those involving non-linear dynamics or cost functions that are non-convex
or non-differentiable. In our application, this versatility allows the system to perform real-
time obstacle avoidance using LiDAR sensor input. Figure 4.4 illustrates the point cloud
obtained from the LiDAR sensor, showing how the robot perceives nearby obstacles dur-
ing navigation. Since the environment can change rapidly and analytical gradients of the
cost function are not available, a sample-based approach like MPPI is essential to ensure
responsive and reliable planning.

Figure 4.4: Real-time obstacle detection by LiDAR sensor. The red points represent the
measured positions of surrounding obstacles.
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Algorithm 1 Model Predictive Path-Integral Control in 4WIDS Vehicle Navigation
Given: F, g: Transition Model;
K: Number of samples;
T: Number of timesteps;
U ← (u0,u1, . . . ,uT−1): Initial control sequence;
Σ,ϕ ,c,γ,λ ,α,∆t: Cost functions and parameters;
while task not completed :

x0← ObserveSystemState()
for k = 0 to K-1 :

x← x0;
Sample E= (εk

0 . . .ε
k
T−1), ε ∈N(0,Σ);

for t = 1 to T-1 :
if k < (1−α)K :

vt−1 = ut−1 + εk
t−1; ▷ samples for exploitation

else
vt−1 = εk

t−1; ▷ samples for exploration

x← F(x,g(vt−1),∆t) ;
Sk+= c(x,u)+ γu⊤t−1Σ−1vt ▷ add stage cost

Sk+= ϕ(x) ▷ add terminal cost
ρ ←mink[Sk];
η ← ∑K

k=1 exp
(
− 1

λ (Sk−ρ)
)

;
for k = 0 to K-1 :

wk← 1
η exp

(
− 1

λ Sk
)

; ▷ calculate sample weights

for t = 0 to T-1 :
U ←U +

(
∑K

k=1 wkE
k
)

; ▷ calculate weighted sum

uvehicle← ConvertTo8DoFVehicleCommand(u0);
SendToVehicleActuators(uvehicle);
for t = 1 to T-1 :

ut−1← ut ; ▷ shift the control sequence
uT−1← Initialize(uT−1);
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4.5.3 MPPI Switching Multiple Control Spaces

Through analysis of the experimental results in Section 4.6.4, we found that selecting the
control input space to explore the solution affects the navigation performance significantly.
To take advantage of the strengths and mitigate the weaknesses of each control input space,
we propose a method to switch between multiple spaces in real time according to the sit-
uation explained in Algorithm 2. If two control input spaces are defined as uA and uB,
both spaces need to update the control input sequence in each time step as a preparation for
the next calculation. The conversion functions ConvertToSpaceA and ConvertToSpaceB
are needed to convert the control input sequence to the other space. If we switch u3DoF to
u4DoF, the conversions are done using Eqs. (4.4), (4.12), and (4.7) in Section 4.4.

Algorithm 2 MPPI Switching Multiple Control Input Spaces

UA
0 ← (uA

0 , . . . ,u
A
T−1): Initial control sequence of space A;

UB
0 ← (uB

0 , . . . ,u
B
T−1): Initial control sequence of space B;

while task not completed :
mode← SelectMode(); ▷ select control input space
if mode is A :

UA
t+1← SolveMPPI(UA

t );
UB

t+1← ConvertToSpaceB(UA
t+1);

else if mode is B :
UB

t+1← SolveMPPI(UB
t );

UA
t+1← ConvertToSpaceA(UB

t+1);

4.6 Experiments

4.6.1 Simulation Setup

To evaluate the navigation performance of the proposed architecture, we set up a simulation
environment using Gazebo simulator. Two types of fields are prepared, ”Cylinder Garden”
and ”Maze” (Fig. 4.5). The vehicle need to reach 10 goals sequentially in a episode as
fast as possible while avoiding densely placed obstacles. The four wheel positions are set
symmetrically as l f = lr = dl = dr = 0.5 [m] (Fig. 4.2).
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(a) Cylinder Garden (Easier Environment) (b) Maze (Harder Environment)

Figure 4.5: Simulation environment. The 8 DoF vehicle needs to navigate through dense
obstacles and narrow passages.

Our evaluation system was developed using ROS and C++. Calculation is performed
on a desktop computer with an Intel Core i7-13700KF CPU and 32GB of RAM. For faster
computation, we used CPU multi-threading with OpenMP [75].

4.6.2 Cost Formulation for MPPI

In this section, the cost functions c(x,u) and ϕ(x) (See Algorithm 1 are defined for the
MPPI controller.

The stage cost c(x,u) is defined as the weighted sum of the following terms,

c(x,u) = 40 cdist(
Gpx,

Gpy)+30 cangle(θ)+10 cspeed(v)

+50 ccollision(
Gpx,

Gpy)+ ccmd(u), (4.15)

where Gpx and Gpy are the vehicle’s position, θ is the vehicle’s yaw angle, and v is the
vehicle’s velocity. cdist(

Gpx,
Gpy), cangle(θ), and cspeed(v) are quadratic error from the ref-

erence path and constant target velocity vdes, respectively. ccollision(
Gpx,

Gpy) is a binary
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cost function that returns 1 if the vehicle is in collision, and 0 otherwise;

ccollision(
Gpx,

Gpy) =

{
0 if no collision
1 if collision

, (4.16)

Collision is determined based on a two-dimensional obstacle map that is updated in real
time using LiDAR point cloud data. A collision is considered to have occurred if the center
of the vehicle is closer to the nearest obstacle than its body radius of 0.6 m. ccmd(u) is
used to smooth the vehicle actuator commands. In either control space u3DoF or u4DoF to
be explored, it can be converted to 8-dimensional vehicle actuator commands uvehicle with
Eq. (4.3) and Eq. (4.10). With previous vehicle command uprev

vehicle in the control sequence,
minimizing the penalty term

ccmd(u) = ∥uvehicle−uprev
vehicle∥2 (4.17)

can smooth the vehicle actuator commands.
the terminal cost ϕ(x) is added only for preventing reverse driving,

ϕ(x) = 50 ϕgoal(
Gpx,

Gpy), (4.18)

where ϕgoal(
Gpx,

Gpy) is the quadratic error from the goal position.

4.6.3 Preparing MPPI Controllers for Comparison

To investigate the characteristics of the MPPI controller depending on the choice of the
control space, MPPI-3D and MPPI-4D are prepared to explore two different control spaces,
u3DoF and u4DoF.

Since the variance parameter affects the controller’s behavior, setting the variance of
the control space carefully is important for fair comparison. Changing the variance param-
eters, two types of MPPI-3D are prepared, MPPI-3D(a) and MPPI-3D(b). The variance
parameters of MPPI-3D(a) and MPPI-4D are set systematically as shown in Table 4.3 fol-
lowing the rule that the variance is half of the maximum value of the control space defined
in Table 4.2. This consideration is to explore a wide range of the control space, as the
normal distribution contains about 95% of the data within twice the standard deviation.
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Table 4.1: MPPI Params

Param Value Unit

K 3000 sample
T 30 step
∆t 0.033 sec
α 0.1 -
λ 250 -
γ 6.25 -

Table 4.2: Controller Params

Param Value Unit

Control Interval ∆ti 0.05 sec
Target Velocity vdes 2.00 m/s
Max. Velocity vmax 2.00 m/s
Max. Yawrate ωmax 1.58 rad/s
Max. Steering Angle 1.58 rad

Table 4.3: MPPI Variance Params

Name Control Space Variance Σ

MPPI-3D(a) [Vx,Vy,ω] [1.00,1.00,0.78]
MPPI-3D(b) [Vx,Vy,ω] [0.55,0.55,0.96]

MPPI-4D [Vf l,Vrr,δ f l,δrr] [1.00,1.00,0.78,0.78]

Another approach is to fit a normal distribution numerically close to the sampled results
of MPPI-4D. MPPI-3D(b) follows this procedure, and the variance parameters are calcu-
lated with maximum likelihood estimation of the normal distribution, when the vehicle is
stopped and all the steering angles are zero in the space of u4DoF.

Additionally, a hybrid MPPI controller, MPPI-H, is prepared to switch between MPPI-
3D and MPPI-4D depending on the situation. From the verification results, we determined
that the mode selection should be based on the target path tracking error. The mode switch-
ing function in Algorithm 2 is defined as follows with constant parameter dthresh = 0.3 [m]

and θthresh = 0.3 [rad],

SelectMode()

=

{
u3DoF if cdist(

Gpx,
Gpy)< dthresh and cangle(θ)< θthresh

u4DoF otherwise
. (4.19)

4.6.4 Definition of Evaluation Metrics

Here the evaluation metrics are defined to compare the performance of the MPPI con-
trollers. All metrics are calculated for all episodes, and the mean value is used for evalua-
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tion.

Cost

”Cost” is the sum of stage cost and terminal cost of optimal trajectory output from MPPI.
This metric indicates how well the MPPI controller can minimize the cost function and get
close to the optimal behavior.

Vehicle Command Change

To evaluate the smoothness of the vehicle actuator commands, two metrics are defined.
”Steering Rate” is the absolute value of the steering angular velocity. ”Wheel Acceleration”
means the absolute change of the wheel velocity. For both metrics, the mean values of four
wheels are used for evaluation.

Navigation Efficiency

two metrics are defined to evaluate the navigation efficiency. ”Trajectory Length” is se-
lected to evaluate how the vehicle could reach the goal with a short path. ”Episode Time”
is also used to know how fast the vehicle could reach the goal.

Success Rate

Success rate is the percentage of episodes that the vehicle reached all the given goal points.
Collision with obstacles and getting stuck in the field are major factors of failure.

4.6.5 Evaluation Results Comparison

100 episodes of navigation are performed for each field, and the evaluation results are
shown in Table 4.4 and Table 4.5. For each MPPI controller, the mean calculation time is
less than 30ms and works in real-time with the control interval ∆ti = 50 [ms]. Even though
the cost function and algorithmic parameters are common, the results drastically changed
by exploring different control spaces.

MPPI-3D(a) has a short episode time, which means it can drive efficiently. A lower suc-
cess rate (76% in Cylinder Garden, 33% in Maze) means that it fails to complete episodes
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frequently, and has difficulty in safe and stable navigation. Since MPPI-3D(b) has a smaller
variance in the vehicle velocity space than MPPI-3D(a), it moves slowly and appears more
conservative behavior. The episode time is the worst among the four controllers in both
fields. However, the success rate is only slightly improved (89% in Cylinder Garden, 58%
in Maze) from MPPI-3D(a) and still has low stability.

On the other hand, MPPI-4D showed an extremely high success rate (100% in Cylinder
Garden, 99% in Maze) and stable navigation behavior. MPPI-4D achieved the lowest cost
and shortest trajectory length among the four controllers, indicating its capability to find
the optimal solution.

Comparing the episode time in Cylinder Garden, MPPI-4D (38.4s) is faster than MPPI-
3D(b) (41.3s), but MPPI-3D(a) (36.4s) surpasses MPPI-4D in terms of driving efficiency.

Summarizing the characteristics of MPPI-3D and MPPI-4D, MPPI-3D is good at high-
speed driving but has low stability, and MPPI-4D is more conservative and is good at
stable navigation but has lower efficiency. Then it is reasonable to switch control spaces
depending on the situation to balance the efficiency and stability. In the case the vehicle
is in a difficult situation (i.e.when the path tracking error is large), MPPI-4D is selected to
ensure stable navigation. Otherwise, MPPI-3D is selected to drive efficiently.

As a result, the hybrid MPPI-H switching control spaces showed the best episode time
(31.2s in Cylinder Garden, 44.8s in Maze), keeping the high success rate (99% in Cylinder
Garden, 96% in Maze) compared to MPPI-4D. The fact that MPPI-H has no worst score in
any of the metrics is also evidence that MPPI-H has a balanced performance.

4.6.6 Trajectory Comparison

To understand the characteristics of the controllers more deeply, the trajectories of the four
controllers are compared in Fig. 4.6. This example scenario is a hard situation where the
vehicle receives the next goal point and needs to turn sharply.

In Fig. 4.6, the MPPI-3D(b) turns with a larger radius than the other controllers, and
a part of the trajectory is close to the collision with surrounding obstacles. It is a typical
dangerous behavior and shows the reason of the lower success rate of MPPI-3D controllers.

On the other hand, MPPI-4D can turn in a small radius and run safely keeping a distance
from the obstacles, showing the reason of the high success rate of MPPI-4D.
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Table 4.4: Evaluation Results of 100 Navigation Episodes in Cylinder Garden
Blue: best, Red: worst among controllers

Metric
MPPI-3D(a)
[Vx,Vy,ω]

MPPI-3D(b)
[Vx,Vy,ω]

MPPI-4D
[Vf l,Vrr,δ f l,δrr]

MPPI-H
3D(a)/4D

Cost [−] ↓ 3241.7 1900.5 1455.8 2425.4
Calc. Time [ms] ↓ 24.1 23.0 27.6 26.6

Steering Rate [rad/s] ↓ 4.5 3.1 3.6 4.0
Wheel Acc. [m/s2] ↓ 5.03 3.36 4.08 4.98

Trajectory Length [m] ↓ 51.9 46.0 40.8 42.6
Episode Time [s] ↓ 36.4 41.3 38.4 31.2
Success Rate [%] ↑ 76 89 100 99

Note that minor collisions that do not hinder navigation are not considered failures.

Table 4.5: Evaluation Results of 100 Navigation Episodes in Maze
Blue: best, Red: worst among controllers

Metric
MPPI-3D(a)
[Vx,Vy,ω]

MPPI-3D(b)
[Vx,Vy,ω]

MPPI-4D
[Vf l,Vrr,δ f l,δrr]

MPPI-H
3D(b)/4D

Cost [−] ↓ 10030.4 3918.8 2452.3 2887.6
Calc. Time [ms] ↓ 19.7 19.9 24.0 21.0

Steering Rate [rad/s] ↓ 6.0 3.6 5.0 3.5
Wheel Acc. [m/s2] ↓ 6.02 3.77 4.85 4.02

Trajectory Length [m] ↓ 72.1 64.8 55.2 55.3
Episode Time [s] ↓ 49.6 55.9 52.1 44.8
Success Rate [%] ↑ 33 58 98 96

Note that minor collisions that do not hinder navigation are not considered failures.

In the situation where the vehicle should turn sharply, MPPI-H activates MPPI-4D to
drive carefully, resulting in the same turning behavior as MPPI-4D.

4.6.7 Effect of Control Input Space Selection

In this section, why the performance changes by selecting control input space for sampling
is discussed. Specifically, the explanation of why the solution search in the control space
u4DoF is more likely to find a more optimal solution than in u3DoF is provided.
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Figure 4.6: Trajectory comparison under a challenging navigation scenario.
While MPPI-3D shows dangerous behavior close to the collision, MPPI-4D and MPPI-H
drive safely with turning in a small radius.
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Figure 4.7: Jacobian matrices comparison between u3DoF and u4DoF
when δ f l = δ f r = δrl = δrr = 0.25π [rad] and Vf l =Vf r =Vrl =Vrr = 0.7 [m/s].
JB has a more sparse structure than JA, which makes the optimal solution search easier.

In the navigation task, one of the most difficult situation is when the next goal point is
specified in the opposite direction to the vehicle’s heading. In this case, the optimal behav-
ior is to quickly decelerate the vehicle and rotate the vehicle body to the target direction.

Here we consider the Jacobian matrices JA,JB with respect for the projection from each
control input space u3DoF,u4DoF to the vehicle command space uvehicle. The Jacobian ma-
trices are normalized to the range of -1 to 1 and plotted as color maps in Fig.4.7.

As for the control input space u3DoF, deceleration of the vehicle speed Vx is strongly
affects the vehicle steering angles. Therefore, even if a control sequence that includes a
rapid deceleration is sampled, it is likely to be penalized due to the large change in the
steering angle. As a result, the deceleration behavior is less likely to occur and the vehicle
tries to rotate with the current speed, which often causes collision with obstacles.

On the other hand, as for the control input space u4DoF, the Jacobian matrix JB has a
more sparse structure than JA. This means that the change in the vehicle speed and the
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steering angles are relatively independent. This feature makes the optimal solution search
easier, and more likely to find the better solution including rapid deceleration and rotation
of the vehicle at the same time.

4.7 Discussion and Insights on Q2-β

This chapter establishes a framework for autonomous navigation of 8 DoF vehicles in
obstacle-rich environments using MPPI. The implementation successfully achieves au-
tonomous navigation in complex environments by leveraging the flexible motion capabili-
ties of 8 DoF vehicles while maintaining practical applicability through real-time obstacle
detection from LiDAR point cloud data.

This chapter establishes a baseline framework for addressing research question [Q2-
β ] How can the handling of multiple tasks be enhanced? The weighted scalarization
approach that combines multiple task objectives represents the mainstream methodology,
and this chapter follows the standard approach.

The straightforward implementation of MPPI (MPPI-3D) demonstrated insufficient suc-
cess rates for autonomous navigation. However, safety performance improved through
modifications to the vehicle action sampling space. The enhanced sampling space in MPPI-
4D achieved higher success rates despite somewhat conservative behavior. The hybrid ap-
proach (MPPI-H), which switches sampling spaces based on the situation, maintained high
success rates while enabling efficient navigation.

This finding indicates that simply applying MPPI to a system may not yield optimal
results, suggesting that further improvements can be achieved by refining the optimization
algorithm. This chapter lays the groundwork for Chapter 5, where we explore enhanced
optimization algorithms to further improve the performance of 8 DoF vehicles.
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Chapter 5

Nullspace MPC: Priority-Based
Decomposition of Multi-Objective
Control with Application to 8 DoF
Vehicle Navigation

© 2025 SICE. Portions of this chapter first appeared in ”Priority-Based Decomposition of
Multi-Objective Control Problem for Holonomic Vehicle Motion Planning in Arbitrary Obstacle

Avoidance,” Transactions of the Society of Instrument and Control Engineers, vol. 61, no. 9, 2025,
in print [76].

5.1 Chapter Overview and Contribution to Q2-β

This chapter proposes a novel optimization algorithm SA-HQP (Sampling-Augmented Hi-
erarchical Quadratic Programming) and its receding horizon extension Nullspace MPC to
achieve multi-objective control and demonstrates its application to 8 DoF vehicle naviga-
tion. This work addresses [Q2-β ] How can the handling of multiple tasks be enhanced?
and demonstrates the advantages of the proposed approach over the baseline method MPPI
presented in Chapter 4.

Conventional approaches like MPPI minimize a scalarized cost function where multi-
ple task-related terms are weighted. This approach relies solely on soft constraints through
weight parameters. High-degree-of-freedom vehicles often have multiple control input pat-
terns that can achieve a given task. This characteristic makes the optimization problem non-
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convex, potentially leading to local optima that fail to produce desirable driving behavior.
While well-tuned weight parameters can yield satisfactory performance, finding such pa-
rameters is often challenging. Even when suitable parameters are found, their effectiveness
across diverse environments remains uncertain.

The proposed approach takes a hierarchical decomposition strategy by explicitly con-
sidering task priorities in multi-objective control problems. In trajectory planning for holo-
nomic vehicles as a proof of concept, the proposed method demonstrated superior perfor-
mance compared to MPPI by achieving higher-priority tasks more certainly while generat-
ing trajectories that were more optimal in the context of MPPI’s cost function. Validation
through narrow-space navigation with 8 DoF vehicles showed advantages in both trajectory
length and time-to-goal, achieving more efficient driving performance compared to MPPI.

5.2 Background and Related Work

Holonomic vehicles possess particularly high degrees of freedom among mobile systems,
enabling flexible movements such as in-place rotation and lateral motion. This character-
istic makes them well-suited for efficient navigation in confined spaces and environments
with dense obstacles [77]. However, the high number of degrees of freedom results in
numerous possible motion choices, making optimal action selection challenging.

A multi-objective optimization framework provides a suitable approach for developing
action plans that leverage the performance capabilities of high-degree-of-freedom systems.
This methodology requires the designer to define a set of objectives (tasks), and the op-
timization process then aims to find solutions that satisfy these objectives to the greatest
possible extent.

A prevalent method for addressing multi-objective optimization problems involves min-
imizing a scalarized cost function, which is typically formulated as a weighted sum of terms
representing individual tasks [78]. This strategy demonstrates effectiveness when manag-
ing a limited number of tasks and has found numerous practical applications. Various
optimization techniques, such as gradient-based and sampling-based methods, have been
extensively investigated to identify optimal solutions within this framework [54, 79, 80].
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Among these, Model Predictive Path-Integral Control (MPPI) [80] stands out as a promi-
nent sampling-based optimization technique. It significantly expands the applicability of
optimization methods by utilizing a gradient-free algorithm for solution searching and has
proven effective across diverse applications [77,81–83]. However, this approach of balanc-
ing multiple task objectives through weighting parameters encounters limitations. Specifi-
cally, it is less suitable for scenarios involving a large number of tasks because it is challeng-
ing to find an appropriate set of weights to achieve a satisfactory trade-off among multiple
tasks.

When addressing problems where achieving all tasks through single-objective opti-
mization is challenging, problem decomposition emerges as an effective strategy [84–88].
This study focuses on hierarchical decomposition based on task priorities as a rational ap-
proach to problem partitioning. The hierarchical framework establishes explicit priorities
among tasks and aims to achieve them sequentially, from highest to lowest priority. While
this approach excludes solutions that sacrifice higher-priority tasks for lower-priority ones,
it simplifies the optimization problem at each hierarchical level. For instance, in a sce-
nario involving obstacle avoidance and smooth motion as objectives, solutions that achieve
smooth motion at the cost of collision are practically undesirable. In such cases, a reason-
able problem decomposition - selecting the smoothest motion from the set of collision-free
solutions - facilitates problem-solving without compromising solution quality.

While hierarchical multi-objective optimization problems with task priorities can be
solved using Hierarchical Quadratic Programming (HQP) [87, 88], this approach has lim-
itations in its applicability. Specifically, HQP requires both the system model and opti-
mization objectives to be expressed in linear form, making it difficult to handle nonlinear
constraints such as avoiding obstacles with arbitrary shapes.

This study first proposes SA-HQP (Sampling-Augmented HQP), a novel optimization
framework for solving motion planning problems for holonomic vehicles. SA-HQP ex-
tends the hierarchical optimization framework formulated by HQP by incorporating in-
sights from sampling-based optimization, enabling the handling of nonlinear expressions.
Furthermore, SA-HQP is extended to a receding horizon controller, proposing Nullspace
MPC that successfully achieves 8 DoF vehicle navigation. Nullspace MPC demonstrates
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efficient navigation capabilities, particularly in narrow-space navigation tasks, where it
achieves faster goal-reaching times and shorter paths compared to MPPI.

Lastly, we discuss the relationship between SA-HQP and lexicographic optimization,
a concept in the field of Operations Research. Lexicographic optimization is a multi-
objective framework that assigns explicit task priorities and ensures that no lower-level task
can degrade a higher-priority one, sharing the same motivation as SA-HQP. It has been ap-
plied in diverse areas such as liquid-tank regulation [89], aircraft trajectory design [90], and
worker-assignment scheduling [91]. Lexicographic problems are often solved efficiently
as linear-programming or with gradient-based methods when the objectives and constraints
can be written as linear or smoothly convex functions. This structural requirement limits
the class of task formulations: non-differentiable objectives―such as obstacle avoidance
with arbitrary shapes or discrete cost maps―cannot be handled directly. To address this re-
striction, some approaches discretize the state space via sampling or graph search [92, 93],
but they suffer from the curse of dimensionality [94]. SA-HQP can be viewed as a hy-
brid that keeps the fast, priority-preserving HQP core (gradient-based) while delegating
non-smooth tasks to a low-dimensional sampling layer. As a result it (1) runs in real time
for vehicle navigation, (2) handles nonlinear or non-differentiable task representations, and
(3) mitigates the high-dimensional exploration by sampling only a small parameter sub-
space. The trade-off is that sampling relaxes the strict optimality guarantee of pure HQP
and complicates stability analysis.

5.3 Formulation of Optimization Problem Considering Task
Priority

This section formulates the framework that decomposes optimization problems by consid-
ering task priorities, which is the main contribution of this work.

Let sss be a vector containing all variables to be determined in the motion planning of a
system, and let S be the solution set of sss. The objective of this method is to select an optimal
solution sss∗ from the solution set S that satisfies multiple tasks specified by the designer as
much as possible.
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The optimization variable sss for the motion planning problem of a holonomic vehicle is
defined as follows. For the vehicle state, let px and py denote the x and y components of the
vehicle position in the global coordinate frame, and θ represent the vehicle heading angle.
For the control inputs, let vx and vy denote the vehicle velocities in the global coordinate
frame, and ω represent the angular velocity. Given a planning horizon of T time steps, the
state vector pppk ∈ R3 and control input vector vvvk ∈ R3 at time step k are defined as,

pppk = [pk
x, pk

y,θ k] (k = 0, · · · ,T ),

vvvk = [vk
x,v

k
y,ωk] (k = 0, · · · ,T −1),

and the vector sss ∈ R6T+3 that represents the solution to the motion planning problem is
defined as,

sss = [ppp0,vvv0, · · · , pppk,vvvk, · · · , pppT−1,vvvT−1, pppT ]
⊤. (5.1)

First, the conditions that sss must satisfy are defined as tasks. A task T is expressed as a
set of nonlinear equality and inequality constraints, as shown in Eq. (5.2). A task can be
defined using either equality constraints or inequality constraints alone. The set of solutions
sss that satisfy task T is called the task set and is denoted as ST.

T : F(sss) = 000, G(sss)≤ 000 (5.2)

ST = {sss ∈ S | F(sss) = 000,G(sss)≤ 000} (5.3)

This framework prepares multiple prioritized tasks and aims to achieve them in order
of priority. From this perspective, a motion planning problem P is expressed as an ordered
list of N hierarchical tasks T1 · · ·TN (Eq. (5.4)). The integers from 1 to N assigned to each
task represent the task priorities, where smaller values indicate higher priority (T1 has the
highest priority).

P=


T1 : F1(sss) = 000, G1(sss)≤ 000

...

TN : FN(sss) = 000, GN(sss)≤ 000

(5.4)

One approach to solving the prioritized control problem (Eq. (5.4)) is to sequentially
add tasks in order of priority while progressively constraining the solution set where the
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optimal solution exists. Qualitatively, this can be understood as lower priority tasks aim-
ing to achieve their objectives only within the constraints that do not interfere with the
achievement of higher priority tasks.

Consider a procedure to constrain the solution set by adding a lower priority task T j (i<

j) to a higher priority task set STi that satisfies task Ti (i ∈ 1,2, · · · ,N−1). This means

selecting a solution set STi

>
∩ ST j from within the higher priority task set Ti that also achieves

the lower priority task. The operator
>
∩ is newly defined to narrow down the solution set

while considering priorities. While it fundamentally takes the intersection of the sets on
both sides like the ∩ operator, when the intersection is an empty set, it returns the solution
set from the higher priority task set on the left side that minimizes deviation from the lower
priority task (Eq. (5.5), Fig.5.1).Here, wp represents a penalty term added when inequality
constraints are not satisfied. Depending on the task formulation, the penalty term wp can
either be set as a constant or defined as a function of the magnitude of constraint violation
G j(sss).

STi

>
∩ ST j =



if STi ∩ST j ̸= ϕ :
STi ∩ST j

if STi ∩ST j = ϕ :
{sss ∈ STi |min

sss
(∥Fj(sss)∥2 +Gb(sss))},

Gb(sss) =

{
0 if G j(sss)≤ 000
wp otherwise

.

(5.5)

(a) if STi ∩ST j ̸= ϕ (b) if STi ∩ST j = ϕ

Figure 5.1: Definition of STi

>
∩ ST j . Check Eq. (5.5).

62



Figure 5.2: Overview of the proposed approach to solve a simple example problem. Si2g is
a solution set of vehicle trajectories connecting the initial and goal poses. Two tasks (TNNN

1
and TL

2 ) are additionally taken into account to achieve obstacle avoidance and smooth
driving. The nonlinear task TNNN

1 is alternatively expressed as a linear task parametrized at
the VVV which means a via-pose to be passed on the way, as depicted by the arrows in the
vehicle trajectory figures. The appropriate VVV to satisfy obstacle avoidance is explored by a
sampling-based optimizer, and the smooth trajectory avoiding obstacles is finally obtained
as a solution of the motion planning problem.

The optimal solution sss∗ that achieves all tasks according to their priorities satisfies
Eq. (5.6). When multiple operators

>
∩ exist in a single equation, they are evaluated from

left to right.

sss∗ ∈ ST1

>
∩ ·· ·

>
∩ STN (5.6)

When multiple solutions sss∗ exist, any one can be selected since all the solutions already
satisfy all task constraints.
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5.4 How to Solve Optimization Problem Considering Task
Priority

This section describes the Sampling-Augmented Hierarchical Quadratic Programming (SA-
HQP) method for solving multi-objective optimization problems with task priorities, yield-
ing the solution sss∗ (Eq. (5.6)). A schematic overview of the method is presented in Fig.
5.2.

As a special case, when all tasks can be expressed as linear tasks TL (where the subscript
L denotes ”linear”) comprising sets of linear equality and inequality constraints as shown in
Eq. (5.7), the problem can be efficiently solved using Hierarchical Quadratic Programming
(HQP) [87, 88]. The details of HQP are described in Section 5.5.

TL : Asss−bbb = 0, Dsss− fff ≤ 000 (5.7)

However, when the problem contains even one nonlinear task TN (where the subscript N
denotes ”nonlinear”) that cannot be expressed in the form of Eq. (5.7), HQP cannot be ap-
plied. In practical applications, problems often involve nonlinear tasks, which significantly
limits the applicability of the basic HQP approach.

This work proposes a framework that extends the applicability of the method by incor-
porating sampling-based optimization to handle nonlinear tasks. The problem formulation
for cases involving both linear and nonlinear tasks is shown in Eq. (5.8). For simplicity,
this analysis focuses on the case in which only task m (1≤m≤ N) is nonlinear, though the
approach can be extended to address multiple nonlinear tasks.

PN =



TL
1 : FL

1 (sss) = 000, GL
1(sss)≤ 000

...

TN
m : FN

m (sss) = 000, GN
m(sss)≤ 000

...

TL
N : FL

N (sss) = 000, GL
N(sss)≤ 000

(5.8)

The solution sssN
∗ that satisfies Eq. (5.9) must be found.

sssN
∗ ∈ STL

1

>
∩ ·· ·

>
∩ STN

m

>
∩ ·· ·

>
∩ STL

N
(5.9)
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Since directly solving the problem PN containing nonlinear tasks is challenging, this
work proposes an approach that introduces a parameter VVV to transform the nonlinear tasks
into locally linear tasks PL(VVV ) (Eq. (5.10)), which can then be solved using HQP.

PL(VVV ) =



TL
1 : FL

1 (sss) = 000, GL
1(sss)≤ 000

...

TL
m : FL

m(sss;VVV ) = 000, GL
m(sss;VVV )≤ 000

...

TL
N : FL

N (sss) = 000, GL
N(sss)≤ 000

(5.10)

The proposed approach is illustrated using a concrete example, as shown in Fig. 5.2.
In vehicle motion planning, obstacle avoidance with arbitrary shapes is a nonlinear task.
The method introduces a parameter VVV = [pppmid]

⊤ that includes the vehicle state pppmid to be
achieved at a specific time step Tmid. In the example shown in Fig. 5.2, VVV corresponds
to a via pose through which the vehicle must pass on its way to the goal location. The
constraint requiring the vehicle state at time Tmid to match the target value specified by
parameter VVV can be expressed as a linear task. By varying VVV , diverse vehicle trajectories sss

can be generated. By selecting an appropriate parameter VVV that enables obstacle avoidance,
the nonlinear task of avoiding arbitrarily shaped obstacles can be achieved.

The solution sssL
∗(VVV ) to the problem PL(VVV ) for a given parameter VVV can be obtained using

HQP, and the resulting solution sssL
∗(VVV ) satisfies Eq. (5.11).

sssL
∗(VVV ) ∈ STL

1

>
∩ ·· ·

>
∩ STL

m

>
∩ ·· ·

>
∩ STL

N
(5.11)

The solution sssL
∗(VVV ) represents the result of considering all linear tasks in order of priority

under a given parameter VVV . When exploring the parameter VVV , it is necessary to consider
all tasks that are affected by this parameter selection. Specifically, the nonlinear task TN

m

and all linear and nonlinear tasks with lower priority must be considered as constraints. Let
VVV ∗ denote the parameter that satisfies these conditions and V represent the set of possible
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values for VVV . Then, VVV ∗ is expressed by Eq. (5.12).

VVV ∗ = VVV ∈ V (5.12)

s.t.
TN

m : FN
m (sssL

∗(VVV )) = 000, GN
m(sss

L
∗(VVV ))≤ 000

TL
m+1 : FL

m+1(sss
L
∗(VVV )) = 000, GL

m+1(sss
L
∗(VVV ))≤ 000

...
TL

N : FL
N (sss

L
∗(VVV )) = 000, GL

N(sss
L
∗(VVV ))≤ 000

To explore VVV ∗, this work introduces Sampling-Based Optimization (SBO), which estimates
solutions by randomly sampling parameter VVV and identifying those that satisfy the required
conditions. The details of SBO are described in Section 5.6.

Finally, the solution sssL
∗(VVV ∗) obtained using the optimal parameter VVV ∗ from SBO serves

as an approximation of the true solution sssN
∗ (Eq. (5.9)) to the multi-objective control prob-

lem (Eq. (5.8)) that contains both linear and nonlinear tasks.

5.5 Hierarchical Quadratic Programming (HQP)

This section describes an efficient method for solving multi-objective optimization prob-
lems PL where all tasks are expressed solely through linear equalities and inequalities as
shown in Eq. (5.13). The solution sssL

∗ ∈ STL
1

>
∩ ·· ·

>
∩ STL

N
can be obtained by sequentially

solving hierarchical quadratic programming problems [87, 88].

PL =


TL

1 : A1sss−bbb1 = 0, D1sss− fff 1 ≤ 000
...

TL
N : ANsss−bbbN = 0, DNsss− fff N ≤ 000

(5.13)

The fundamental approach to obtaining the solution sssL
∗ involves achieving lower-priority

tasks while preserving the satisfaction of higher-priority task constraints. Specifically, at
the hierarchical level aiming to achieve task Tp+1, the solution space is modified while pre-
serving the optimal solutions sssp already obtained for higher-priority tasks T1, · · · ,Tp. This
process is repeated N times in order of task priority, ultimately yielding the final solution
sssL
∗ .
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For linear equality constraints, the solution space that does not interfere with task
achievement can be explicitly defined. For a matrix X, a matrix N(X) composed of basis
vectors of its nullspace is defined. The nullspace basis matrix N(X) satisfies the relation-
ship shown in Eq. (5.14).

XN(X) = 000 (5.14)

When a vector sss satisfies the linear equality constraint Asss− bbb = 0, the vector sss+N(A)zzz

also satisfies the same equality constraint for any vector zzz, as demonstrated by Eq. (5.15).

A(sss+N(A)zzz)−bbb = Asss+AN(A)zzz−bbb

= Asss+000−bbb

= 000 (5.15)

This property can be extended to multiple tasks. When Zp is defined as the nullspace
basis matrix that preserves the equality constraints of tasks 1 through p, the nullspace basis
matrix Zp+1 for tasks 1 through p+1 can be given as Eq. (5.16) [88].

Zp+1 = ZpN(Ap+1Zp) (5.16)

For linear inequality constraints, error variables are introduced for each task. Given the
linear inequality constraint Dpsss− fff p ≤ 000 for task Tp, an error variable eeep is introduced to
transform it into Dpsss− fff p ≤ eeep. In the hierarchical optimization problem, the objective
becomes minimizing the error variable eeep while satisfying the inequality constraints of
higher-priority tasks. When solving the optimization problem to determine eeep for task
Tp, the error variables eee1, · · · ,eeep−1 for higher-priority tasks T1, · · · ,Tp−1 are fixed to their
previously optimized values. This ensures that the search for a solution satisfying task Tp

is performed within a region that does not degrade the performance of the higher-priority
tasks. It should be noted that the inequalities are not converted into equality constraints
using slack variables, precisely to maintain a strict priority among the task inequalities.

The restriction of the solution set considering task priorities defined in Eq. (5.5) is
achieved through two mechanisms: (1) The introduction of nullspace basis matrices en-
sures that higher-priority tasks are not compromised (Eqs. (5.15) and (5.16)), (2) The ob-
jective function aims to minimize deviations from both equality and inequality constraints
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(Eq. (5.17)).

minimize
zzzp+1,eeep+1

1
2
∥Ap+1(sssL

p +Zpzzzp+1)−bbbp+1∥2 +
1
2
∥eeep+1∥2

subject to Dp+1(sssL
p +Zpzzzp+1)− fff p+1 ≤ eeep+1

Dp(sssL
p +Zpzzzp+1)− fff p ≤ eee∗p

...

D1(sssL
p +Zpzzzp+1)− fff 1 ≤ eee∗1

000≤ eeep+1

(5.17)

The sequential solution of this optimization problem for p = 1 · · ·N yields the solution sssL
∗

to the multi-objective optimization problem PL.

5.6 Sampling-Based Optimization (SBO)

This section explains how to solve Eq. (5.12) using sampling-based optimization to find
the optimal parameter VVV ∗. The content of this section follows the theory of MPPI, and
theoretical details regarding optimality proofs can be found in [80].

To handle the constraints in Eq. (5.12) more effectively, the problem is transformed
into minimizing the expected value of a cost function C : VVV → R as shown in Eq. (5.18).
Note that in this section, the variable VVV to be optimized is treated as a random variable.
The random variable VVV follows a probability distribution QṼVV parameterized by its expected
value ṼVV .

VVV ∗ = argmin
ṼVV∈V

EV∼QṼVV
[ C(VVV ) ] , (5.18)

The cost function Cl(VVV ) for achieving a task Tl is defined using a constant wb that adjusts
the importance of equality and inequality constraints as follows:

Cl(VVV ) = ∥FN
l (sssL

∗(VVV ))∥2 +GN
b (sss

L
∗(VVV )), (5.19)

GN
b (sss) =

{
0 if GN

l (sss)≤ 0
wb otherwise

. (5.20)
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The cost function C(VVV ) for tasks Tm · · ·TN is defined in Eq. (5.21) as a weighted sum of
individual task cost functions.

C(VVV ) =
N

∑
l=m

wlCl(VVV ), wl ∈ R. (5.21)

However, since task priorities are handled through weighting, it is important to note that
strict prioritization like HQP cannot be applied here. The sampling-based approach offers
the advantage of handling diverse task representations, but introduces a limitation in the
process of determining the parameter VVV by restricting prioritization to soft constraints.
While accepting increased computational complexity, it is possible to find VVV that strictly
satisfy critical tasks. This case can be interpreted as applying an infinite penalty for task
violations.

To efficiently solve Eq. (5.18) through sampling, the problem is reformulated as a KL
divergence minimization problem using variational inference. Let the prior distribution of
random variable VVV be parameterized by mean U and covariance matrix ΣΣΣ as constants,

VVV =U +E, E∼ Normal(000,ΣΣΣ), (5.22)

where E follows a normal distribution with zero mean and covariance ΣΣΣ. This probability
distribution is denoted as QU ,ΣΣΣ. In this case, the optimal distribution q∗(VVV ) of the random
variable VVV is given by the product of the prior distribution QU ,ΣΣΣ of VVV and a Boltzmann
distribution with temperature parameter λ , as shown in Eqs. (5.23) and (5.24).

q∗(VVV ) =
1
η

exp
(
− 1

λ
C(VVV )

)
q(VVV |U ,Σ), (5.23)

η =
∫

exp
(
− 1

λ
C(VVV )

)
q(VVV |U ,Σ)dVVV . (5.24)

However, computing the optimal distribution q∗(VVV ) shown in Eqs. (5.23) and (5.24) is
computationally intractable. Therefore, this approach transforms the problem into finding
a normal distribution that is closest to q∗(VVV ) in terms of KL divergence. Let ṼVV denote
the expected value of the random variable VVV to be optimized, QṼ represent the probability
distribution Normal(ṼVV ,ΣΣΣ) of VVV , and Q∗ denote the optimal distribution q∗(VVV ). With this
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notation, Eqs. (5.12) and (5.18) reduce to the KL divergence minimization problem shown
in Eq. (5.25).

VVV ∗≈argmin
ṼVV

KL(Q∗ || QṼVV ). (5.25)

However, it is important to note that VVV ∗ obtained from Eq. (5.25) differs from the solution
that purely minimizes the expected value of the cost function C(VVV ) as shown in Eq. (5.18).
Strictly speaking, it is the solution to the optimization problem shown on the right side of
Eq. (5.26). Here, P refers to Normal(000,ΣΣΣ). This transformation is a practical approach
to approximately obtain VVV ∗ as a solution to a more tractable optimization problem, since
directly solving Eq. (5.18) is computationally difficult.

argmin
ṼVV

KL(Q∗ || QṼVV ) =argmin
ṼVV∈V

EV∼QṼVV
[ C(VVV ) ]

+λ ·KL(QṼVV || P). (5.26)

Eq. (5.25) can be solved using importance sampling. For K samples VVV (k) ∼ QU ,ΣΣΣ,(k =

0,1, · · · ,K−1), the weight for each sample is obtained as shown in Eq. (5.27).

w(VVV (k)) =
1
η

exp
(
− 1

λ
C(VVV (k))

)
. (5.27)

Finally, the optimal parameter VVV ∗ is obtained by taking the weighted average of K samples,
as shown in Eq. (5.28).

VVV ∗ =U +
K

∑
k=1

w(VVV (k))E(k), (5.28)

while VVV (k) and E(k) represent the k-th sample and noise, respectively.
MPPI was selected as the sampling-based optimization algorithm in this section due

to its computational efficiency and practical applicability. However, since MPPI’s inferred
posterior distribution is constrained to a normal distribution, alternative optimization meth-
ods [95, 96] should be considered when dealing with more complex probability distribu-
tions.
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5.7 Proposed Algorithm: SA-HQP

This section presents the proposed algorithm based on the content discussed from Section
5.3 to Section 5.6. Specifically, it details the procedure for solving the prioritized optimiza-
tion problem that combines linear and nonlinear tasks, as shown in Eq. (5.8).

The solution procedure consists of four main steps. The detailed algorithm is presented
in Algorithms 3 and 4.

Step 1: Sample Parameter VVV

The parameter VVV for locally linearizing nonlinear tasks is sampled to obtain K samples
VVV (k) (k = 0,1, . . . ,K− 1). These samples follow a normal distribution Normal(U ,ΣΣΣ) (see
Eq. (5.22)). The mean UUU and covariance matrix ΣΣΣ are constant parameters.

Step 2: Calculate Evaluation Values for Each Sample

By treating parameter VVV as a precondition, the multi-objective optimization problem con-
taining nonlinear tasks can be handled as a problem containing only local linear tasks. For
each sample VVV (k), the problem containing only linear tasks is solved using HQP, and the
evaluation value C(VVV (k)) to be minimized is calculated. HQP is the procedure shown in
Algorithm 4, which repeatedly solves the optimization problem (5.17) defined in Section
5.5 as many times as there are tasks. The solution obtained by solving HQP satisfies the
task priorities based on the definitions in Eqs. (5.5) and (5.6). Note that this step can be
computed independently for each sample, allowing for parallel processing to improve com-
putational efficiency.

Step 3: Determine Optimal Parameter VVV ∗

The optimal parameter VVV ∗ is obtained by calculating weights wk for each sample VVV (k) based
on their evaluation values C(VVV (k)), and then computing their weighted average.
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Step 4: Obtain Final Solution sssL
∗(VVV ∗)

The final solution sssL
∗(VVV ∗) of the multi-objective optimization is obtained by solving HQP

using the optimal parameter VVV ∗ as a precondition.

Algorithm 3 Sampling-Augmented HQP (SA-HQP)
K: Number of samples;
UUU ,ΣΣΣ: Mean and covariance of sampling distribution;
λ ,Cost: Parameter and cost function for SBO;
for k ← 0 to K−1 :

Sample E(k) ∼ Normal(000,ΣΣΣ);
VVV (k)←UUU +E(k);
sssk← SolveHQP(VVV (k)); (Algorithm 4)
Ck← Cost(sssk);

ρ ←mink[Ck]; ▷ for avoiding numerical instability
η ← ∑K−1

k=0 exp
(
− 1

λ (Ck−ρ)
)

; ▷ normalization factor
for k ← 0 to K−1 : ▷ calculate sample weights

wk← 1
η exp

(
− 1

λ (Ck−ρ)
)

;

VVV ∗←UUU +∑K−1
k=0 wkE

(k); ▷ obtain the optimal via pose
sss∗← SolveHQP(VVV ∗);

Algorithm 4 Solve HQP
N: Number of tasks;
Tn: Task n (n = 1, . . . ,N) represented by An,bn,Dn, fn;
L: initiailze list of v∗ as empty;
sss0← 000;
ZZZ0← III;
for p ← 0 to N−1 :

zzz∗p+1,eee
∗
p+1← SolveQP(ZZZp,L,T1, ...,Tp+1); (Prob.(5.17))

L← (L,eee∗p+1);
sssp+1← sssp +ZZZpzzz∗p+1;
ZZZp+1← ZZZpN(AAAp+1ZZZp);

return sssN ;
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5.8 Comparison with Conventional MPC Formulation

This section clarifies the relationship between the conventional model predictive control
(MPC) formulation and the proposed Sampling-Augmented Hierarchical Quadratic Pro-
gramming (SA-HQP) framework. Additionally, the discussion addresses problem settings
in which the proposed method demonstrates significant advantages, as well as current lim-
itations associated with its application.

Section 2.3 presents the general formulation of MPC in Eqs. (2.1)–(2.4). To facilitate
comparison with the proposed SA-HQP framework, a more concrete formulation of MPC is
provided here. MPC determines an optimal control input sequence {uk}T−1

k=0 along with the
corresponding state trajectory {xk}T

k=0 by solving an optimization problem. The objective
is to minimize the sum of a terminal cost Φ(xT ) and stage costs L(xk,uk), subject to the
system dynamics and inequality constraints g(xk,uk)≤ 0 and g(xT )≤ 0. The optimization
problem is formulated as follows:

min
x,u

Φ(xT )+
T−1

∑
k=0

L(xk,uk)∆t

s.t. x0 = xinit,

xk+1 = f (xk,uk), ∀ k ∈ {0,1, . . . ,T −1}

g(xk,uk)≤ 0, ∀ k ∈ {0,1, . . . ,T −1}

g(xT )≤ 0.

(5.29)

In the context of the SA-HQP framework, the conventional MPC formulation can be
equivalently represented as shown in Eqs. (5.30)–(5.31). A key aspect of this representa-
tion is that the minimization of the objective function can be reformulated as an equality
constraint by introducing as an ideal minimum cost value Cmin. This approach is justi-
fied because the SA-HQP framework is designed to solve optimization problems defined
in Eq. (5.17) that try to minimize deviations from equality constraints, even when these
constraints cannot be satisfied exactly. Consequently, the conventional MPC formulation,
which seeks to minimize an objective function subject to constraints, is interpreted within
the SA-HQP framework as a problem involving two hierarchically prioritized tasks. Specif-
ically, the first-priority task (T1) enforces the system dynamics and inequality constraints,
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while the second-priority task (T2) addresses the minimization of the original cost function,
as shown in Eq. (5.30).

P=

{
T1 : F1(sss) = 000, G1(sss)≤ 000

T2 : F2(sss) = 000,
(5.30)

where the decision variable sss stacks the entire state and control trajectories, i.e., sss =

[x⊤0 ,u
⊤
0 , . . . ,x

⊤
T−1,u

⊤
T−1,x

⊤
T ]
⊤. The tasks are then defined in detail as:

F1(sss) =


x0−xinit

f (x0,u0)−x1
...

f (xT−1,uT−1)−xT

 ,

G1(sss) =


g(x0,u0)

...
g(xT−1,uT−1)

g(xT )

 ,
F2(sss) =

[{
Φ(xT )+∑T−1

k=0 L(xk,uk)
}
−Cmin

]
.

(5.31)

In summary, the SA-HQP framework extends the conventional MPC formulation by in-
troducing multi-level prioritized constraints. This approach generalizes conventional MPC
and is not limited to strict prioritization. The framework also allows for defining an inte-
grated task by weighting multiple objectives and formulating the result as a single equality
constraint. This approach still supports nuanced trade-offs within a single priority level,
much like a traditional cost function.

SA-HQP is particularly effective in problem settings where multiple control solutions
exist to satisfy a critical, high-priority objective. This typically occurs in systems with a
non-trivial null-space for the primary task, leaving room for optimization of secondary ob-
jectives. A primary example is a system with high degrees of freedom (DoF). For instance,
an 8 DoF vehicle can follow a designated path while independently controlling its orienta-
tion. Path following is the high-priority task, and the vehicle’s orientation can be managed
as a lower-priority task by utilizing the redundant DoF. Another suitable scenario involves
tasks with diverse temporal patterns, such as reaching a target state at a future time T. If the
primary task for a robot on a 2D plane is to reach a target position in T seconds, numerous
trajectories can fulfill this requirement. This redundancy allows for the consideration of
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lower-priority tasks, such as selecting a smoother path. Conversely, in problem settings
that lack such redundancy, few degrees of freedom remain for lower-priority tasks. In such
cases, adding low-priority tasks may not change the final solution. The only viable ap-
proach is then to reduce the number of task hierarchies, causing the optimization problem
to become similar to the conventional MPC formulation.

While the SA-HQP formulation is more general than conventional MPC, its current im-
plementation does not necessarily outperform it across all problem types. A key limitation
is that the strict null-space projection for prioritizing tasks is only applicable when tasks are
expressed as linear equality or inequality constraints. Addressing nonlinear tasks requires
the introduction of sampling-based optimization, which brings the drawbacks of increased
computational cost and a soft consideration of task priorities. Specifically, to handle non-
linear system dynamics, the current framework must treat the entire state trajectory through
sampling, offering little advantage over sampling-based MPC methods like MPPI. The SA-
HQP framework is therefore most effective for problems characterized by linear dynamics
that require simultaneous handling of multiple tasks, including those with nonlinear ex-
pressions. The navigation of the holonomic and 8-DoF vehicle models discussed in later
sections meets this requirement, as their vehicle-centric motion can be predicted with linear
expressions, making them prime use cases for the SA-HQP framework.

5.9 Motion Planning of Holonomic Vehicle with SA-HQP

This section presents motion planning simulations for holonomic vehicles to validate the
effectiveness of the proposed method. Figure 5.3 shows three different maps with varying
obstacle shapes and configurations. The vehicle aims to navigate from its initial position
(black arrow, bottom left) to the goal position (purple arrow, top right) while avoiding
obstacles. The motion planning optimization targets the sequence of vehicle states and
velocities up to time step T (i.e., vector sss defined in Eq. (5.1)). The target arrival time T is
set to T = 50 for Map A, T = 40 for Map B, and T = 60 for Map C. These time horizons
were selected as the minimum feasible values within achievable ranges.
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(a) Map A (b) Map B (c) Map C

Figure 5.3: Three types of navigation maps. The gray regions are obstacles. The black
arrows and the purple arrows indicate the initial poses and the goal poses, respectively.

5.9.1 Overview of Evaluation

To validate the effectiveness of the proposed method, the simulation results of three ap-
proaches are compared to address the following two evaluation questions(EQs):

[EQ1] Does considering nonlinear tasks contribute to performance improvement?

[EQ2] Does the framework of solving optimization problems by considering task prior-
ities outperform methods that minimize a single cost function defined by weighted
sums?

For comparison, the following three methods were selected:

[SA-HQP] Priority-based optimization handling nonlinear tasks

[HQP] Strict priority-based optimization handling only linear tasks

[MPPI] Optimization minimizing a single cost function expressed as a weighted sum of
multiple tasks

The evaluation of EQ1 is conducted by comparing SA-HQP and HQP, while the evaluation
of EQ2 is conducted by comparing SA-HQP and MPPI.
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5.9.2 Setting Requirements, Tasks, and Evaluation Metrics

The vehicle requirements are to efficiently navigate through narrow spaces while avoiding
obstacles of arbitrary shapes and reaching the target terminal state at the specified time.
The definition of vector sss, which represents the solution to the motion planning problem,
can be found in Eq. (5.1).

The following presents a list of requirements for vehicle motion planning and their
corresponding evaluation metrics. All evaluation values are scalar quantities, where smaller
values indicate better performance.

[Requirement 1] Satisfy the state update law

[Requirement 2] Satisfy velocity constraints

[Requirement 3] Satisfy acceleration constraints

[Requirement 4] Avoid collisions with arbitrary obstacles

[Requirement 5] Reach the terminal state

[Requirement 6] Minimize the trajectory length

[Requirement 7] Minimize the acceleration for smooth motion

The evaluation metric for Requirement 1 employs the L2 norm of the state updating
error. The discrete-time state update law for the omnidirectional vehicle with time step ∆t

is expressed as:

pppk+1 = pppk + vvvk∆t (k = 0, · · · ,T −1). (5.32)

To ensure the motion planning results are feasible for the control system, minimal deviation
from the state update law is desirable. The evaluation metric is defined as follows. When
the motion planning solution sss perfectly satisfies the state update law, the evaluation value
csys(sss) becomes 0:

csys(sss) =
T−1

∑
k=0
∥pppk+1− (pppk + vvvk∆t)∥2 (5.33)

The evaluation metric for Requirement 2 employs a penalty value vpen ∈ R that is ap-
plied to control inputs vvvk(k = 0, · · · ,T −1) when they exceed the defined velocity bounds
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vvvmin ∈ R3 and maximum velocity vvvmax ∈ R3.

cvlim(sss) =
T−1

∑
k=0

({
0 if vvvmin ≤ vvvk ≤ vvvmax

vpen otherwise

)
(5.34)

The evaluation metric for Requirement 3 implements a penalty system that assigns
apen ∈R to control inputs vvvk(k = 1, · · · ,T −1) when they exceed the specified acceleration
bounds aaamin ∈ R3 and aaamax ∈ R3.

calim(sss) =
T−1

∑
k=1

({
0 if aaamin ≤ aaak ≤ aaamax

apen otherwise

)
. (5.35)

Since the acceleration aaak is not included in the motion planning solution sss, it is calculated
from the velocity vvvk as follows:

aaak =
vvvk− vvvk−1

∆t
(5.36)

where ∆t represents the discrete time step length.
The evaluation metric for Requirement 4 implements a binary penalty system, where

open is assigned for collision cases and 0 for collision-free trajectories. This simulation
employs a simplified collision model that evaluates only the vehicle’s center point position,
disregarding the vehicle’s physical dimensions. A collision is registered when the center
point enters the obstacle region Oobs defined in the global coordinate frame.

cobs(sss) =

{
0 if pppk /∈ Oobs (k = 0, · · · ,T )
open otherwise

(5.37)

The evaluation metric for Requirement 5 employs the L2 norm to quantify the discrep-
ancy between the motion plan’s terminal state pppT and the desired goal pose pppg.

cgoal(sss) = ∥pppT − pppg∥2 (5.38)

The evaluation metric for Requirement 6 employs the total path length clen of the
planned vehicle trajectory.

clen(sss) =
T

∑
k=1

√
(pk

x− pk−1
x )2 +(pk

y− pk−1
y )2 (5.39)
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The evaluation metric for Requirement 7 employs the squared sum of the vehicle’s
center acceleration aaak calculated using Eq. (5.36).

csmo(sss) =
T−1

∑
k=0

aaa⊤k aaak (5.40)

5.9.3 Motion Planner Design
SA-HQP: Proposed Method

In implementing SA-HQP, the requirements defined in Section 5.9.2 were prioritized and
decomposed into tasks, resulting in the task list presented in Table 5.1. The prioritization
strategy focuses on excluding solutions that need not be explored. For instance, the highest
priority task TL

1 excludes solutions that are infeasible for the controlled system. By as-
signing higher priority to TNNN

2 than TL
3 , solutions that reach the target terminal state while

colliding with obstacles are excluded.
The next step involves transforming the problem in Table 5.1 to obtain an approxi-

mate solution, as the original formulation contains nonlinear tasks that are difficult to ad-
dress directly. The nonlinear tasks of obstacle avoidance (TNNN

2 ) and trajectory length min-
imization (TNNN

5 ) are converted to linear tasks by introducing vehicle states pppVVV
a , pppVVV

b , pppVVV
c as

parameters that should be matched at specific time steps a,b,c (0 ≤ a < b < c ≤ T ). The
transformed task list is presented in Table 5.2, and the specific definitions of each task
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TL
1 ,T

NNN→L
2 ,TL

3 ,T
NNN→L
4 are shown below. pppinit represents the vehicle’s initial state.

TL
1 :



ppp0 = pppinit,

pppk = pppk−1 + vvvk−1∆t,
(k = 1, · · · ,T ).

vvvmin ≤ vvvk ≤ vvvmax,

(k = 0, · · · ,T −1).
aaamin ≤ vvvk−vvvk−1

∆t ≤ aaamax,

(k = 1, · · · ,T −1).

TNNN→L
2 :


pppa = pppVVV

a

pppb = pppVVV
b

pppc = pppVVV
c

TL
3 :

{
pppT = pppg

TNNN→L
4 :

{
vvvk−vvvk−1

∆t = 0 (k = 1, · · · ,T −1)

Eq. (5.41) presents the cost function used to search for parameters that satisfy the specified
conditions. The cost function Cost(sss) referenced in Algorithm 3 corresponds to csbo(sss) in
Eq. (5.41).

csbo(sss) = wobscobs(sss)+wgoalcgoal(sss)

+wlenclen(sss)+wsmocsmo(sss). (5.41)

As an implementation strategy, instead of directly sampling the vehicle state [px, py,θ ]∈
R3, parameters [α,β ,γ] ∈ R3 are sampled relative to the straight line connecting the initial
and terminal states, defining parameter VVV . The relationship between the search parameters
and vehicle state is shown in Eqs. (5.42) – (5.44). This transformation enables efficient
sampling of the state space where waypoints are more likely to exist.

px = p0
x +α(p⊤x − p0

x), (5.42)

py = p0
y +β (p⊤y − p0

y), (5.43)

θ = tan−1 p⊤y − p0
y

p⊤x − p0
x
+ γ. (5.44)
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Table 5.1: Task list of SA-HQP for Trajectory Optimization

Task Description Requirements
TL

1 State update law, velocity bounds, acceleration bounds 1, 2, 3
TNNN

2 Collision avoidance with arbitrary obstacles 4
TL

3 Reach the terminal state 5
TNNN

4 Minimize acceleration and trajectory length 6, 7

Table 5.2: Linearized task list of SA-HQP for Trajectory Optimization

Task Description
TL

1 State update law, velocity bounds, acceleration bounds
TNNN→L

2 Via state VVV tracking
TL

3 Reach the terminal state
TNNN→L

4 Minimize acceleration

HQP: Conventional Method 1

To implement HQP, a prioritized list of linear tasks must be prepared. The list containing
nonlinear tasks (Table 5.1) is converted into a list of linear tasks only (Table 5.3) through
simple local linear approximation. The collision avoidance with arbitrary obstacles is lin-
earized into a task of avoiding straight wall surfaces. The trajectory length minimization is
linearized into a task of zeroing the velocity input.

MPPI: Conventional Method 2

MPPI [80] is a sampling-based optimization method that determines control input se-
quences by minimizing an cost function through variational inference. To implement
MPPI, an cost function must be prepared to quantify the quality of control inputs. The
cost function cmppi(sss) is constructed by weighted summation of the evaluation metrics de-
fined in Section 5.9.2.

cmppi(sss) = wgoalcgoal(sss)+wvlimcvlim(sss)+walimcalim(sss)

+wobscobs(sss)+wlenclen(sss)+wsmocsmo(sss). (5.45)
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Table 5.3: Linear task list of HQP

Task Description
TL

1 State update law, velocity bounds, acceleration bounds
TNNN→L

2 Obstacle avoidance (linearized)
TL

3 Reach the terminal state
TNNN→L

4 Acceleration minimization, trajectory length minimization (linearized)

Table 5.4: Comparison of SA-HQP and MPPI Solutions. Smaller costs are better, and
better values are highlighted in bold letters.

Cost
Map B Map C

SA-HQP MPPI SA-HQP MPPI
csys [↓] 0.0 0.0 0.0 0.0
cgoal [↓] 000...333888 2.3 000...333222 5.4
cvlim [↓] 0.0 0.0 0.0 0.0
calim [↓] 000...000 50.0 000...000 2700.0
cobs [↓] 0.0 0.0 0.0 0.0
clen [↓] 14.8 111222...333 111666...777 20.7
csmo [↓] 10.6 555...999 111444...666 73.2
cmppi [↓] 999000111...777 3839.4 444777777...333 53319.7

5.9.4 Comparison of Motion Planning Results

To verify the main interests of the verification, the motion planning results calculated by
the three methods are compared, and the answers to evaluation questions EQ1 and EQ2 are
obtained.

To verify the advantages of SA-HQP in handling nonlinear tasks, the motion planning
results of SA-HQP and HQP in Map A (Fig. 5.4) are compared. Since HQP can only
handle linear tasks, it approximates circular obstacles as linear walls, resulting in failure
to reach the target terminal state. In contrast, SA-HQP achieves more accurate approxima-
tion of nonlinear tasks through the introduction of sampling methods, enabling it to obtain
a solution that reaches the target terminal state while avoiding obstacles. These results
demonstrate that considering nonlinear tasks contributes to meeting the motion planning
requirements (answer to EQ1).
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(a) HQP (b) SA-HQP

Figure 5.4: Comparison of HQP and SA-HQP in Map A.

To evaluate the effectiveness of optimization problem decomposition through prioritiza-
tion, the motion planning results of SA-HQP and MPPI in Map B and Map C are compared.
Table 5.4 presents the evaluation metrics for the obtained motion planning solutions. The
trajectories of SA-HQP and MPPI motion planning are visualized in Fig. 5.6 and Fig. 5.5,
respectively. The results of SA-HQP motion planning for Map B and Map C are shown
in Fig. 5.9 and Fig. 5.10, respectively. The results of MPPI motion planning for Map B
and Map C are shown in Fig. 5.7 and Fig. 5.8, respectively. The evaluation values in Ta-
ble 5.4 indicate that both methods satisfy the requirements for state update rules, velocity
constraints, and obstacle avoidance, with no significant differences. A notable difference
emerges in achieving the target terminal state, where SA-HQP achieves more precise at-
tainment compared to MPPI (see Fig. 5.6 and Fig. 5.5). While SA-HQP never violates
acceleration constraints, MPPI fails to maintain acceleration limits (see Fig. 5.9, Fig. 5.10,
Fig. 5.7, and Fig. 5.8). Comparing the temporal evolution of SA-HQP solutions (Fig.
5.9, Fig. 5.10) and MPPI solutions (Fig. 5.7, Fig. 5.8), SA-HQP exhibits smooth value
transitions, whereas MPPI shows discontinuous and abrupt changes.

When comparing the optimality of both methods using MPPI’s cost function cmppi, SA-
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HQP, which solves problems decomposed by prioritization, obtained a better solution than
MPPI, which directly minimizes cmppi (answer to EQ 2).

(a) Map B (b) Map C

Figure 5.5: MPPI Trajectories in Map B and Map C.

(a) Map B (b) Map C

Figure 5.6: SA-HQP Trajectories in Map B and Map C.
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Figure 5.7: MPPI Motion Planning Result in Map B

Figure 5.8: MPPI Motion Planning Result in Map C
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Figure 5.9: SA-HQP Motion Planning in Map B

Figure 5.10: SA-HQP Motion Planning in Map C
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(a) 1 via-pose,
100 samples

(b) 2 via-poses,
100 samples

(c) 3 via-poses,
100 samples

(d) 4 via-poses,
100 samples

(e) 4 via-poses,
300 samples

(f) 4 via-poses,
500 samples

Figure 5.11: SA-HQP trajectories in Map C with different numbers of via-poses and
samples.

An analysis of SA-HQP’s superior performance compared to MPPI reveals key insights.
The motion planning simulation demonstrates that SA-HQP achieved more faithful require-
ment satisfaction than MPPI while utilizing only one-hundredth of the samples (100 versus
10,000). This sample efficiency advantage stems from SA-HQP’s substantially reduced
sampling space dimensionality. MPPI must explore control inputs across all time steps
(R3T ), whereas SA-HQP samples only three via-points (R9). The critical finding is that
this constrained sampling space provided sufficient expressiveness for the given problem
requirements. This dimensionality reduction was accomplished through strategic problem
decomposition via task prioritization. Notably, SA-HQP incurs higher per-sample compu-
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tational cost due to the need to solve multiple QP problems per sample.
The number of via-points presents a trade-off in the optimization process. Too few

via-points make it difficult to adequately approximate nonlinear tasks, while too many un-
necessarily expand the sampling space and degrade exploration efficiency. To investigate
this relationship, Fig. 5.11 presents the results of applying SA-HQP to Map C with varying
numbers of via-points and samples. With insufficient via-points in Fig. 5.11a, the system
failed to avoid obstacles. However, increasing to two (Fig. 5.11b) and three (Fig. 5.11c)
via-points enabled successful obstacle avoidance. Fig. 5.11d demonstrates that 100 sam-
ples proved insufficient for exploring the solution space with four via-points, resulting in
failed obstacle avoidance. As shown in Figs. 5.11e and 5.11f, increasing the sample count
to 300 or 500 enabled successful obstacle avoidance even with four via-points.

Sampling-based optimization methods provide versatility across diverse problem do-
mains but face inherent limitations in computational efficiency as dimensionality increases
(curse of dimensionality [94]). Gradient-based optimization approaches exhibit limitations
when addressing non-convex or non-differentiable problems but demonstrate superior per-
formance in high-dimensional spaces when appropriate conditions are satisfied. These
gradient-based methods excel particularly in managing hard constraint satisfaction. The
SA-HQP framework achieves computational efficiency through systematic decomposition
of multi-objective control problems using task prioritization. This strategic decomposition
enables the assignment of each subproblem to the appropriate algorithm based on problem
characteristics.

5.10 Nullspace MPC as Receding Horizon Extension of
SA-HQP and Application to 4WIDS Vehicle Naviga-
tion

This section introduces Nullspace MPC, a receding horizon extension of SA-HQP, for real-
time navigation of 4WIDS vehicles. The navigation performance of Nullspace MPC is
evaluated through comparison with the MPPI controller presented in Chapter 4.
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5.10.1 Setting Requirements and Tasks

The control requirements are first enumerated to serve as the basis for defining the control
objectives. The controller design follows a similar approach to the trajectory optimization
solved by SA-HQP in Section 5.9.2. However, unlike the previous trajectory optimization,
the following requirements are modified to accommodate real-time navigation demands
and computational performance considerations.

[Requirement 1] Satisfy the state update law

[Requirement 2] Satisfy velocity constraints

[Requirement 3] Avoid collisions with arbitrary obstacles

[Requirement 4] Follow a reference path

[Requirement 5] Minimize the trajectory length

[Requirement 6] Minimize the acceleration for smooth motion

The requirements are transformed into the task list shown in Table 5.5. Subsequently,
nonlinear tasks are converted into local linear tasks listed in Table 5.6 by parameterizing the
vehicle via states VVV . The tasks listed in Table 5.6 are defined as follows. For TL

1 , the initial
state is set to the observed vehicle state pppobs, and the vehicle’s state update law is con-
strained to follow holonomic motion while respecting velocity limits. For TNNN→L

2 , the states
that the vehicle should pass through are determined based on parameter VVV . The number
of waypoints is set to three, with a,b,c (0 ≤ a < b < c ≤ T ) representing their respective
time steps. For TNNN→L

3 , the vehicle’s acceleration and trajectory length are minimized while
balancing their weights. Note that trajectory length minimization is linearly approximated
as vehicle center velocity minimization for ease of computation.

89



Table 5.5: Task list of Nullspace MPC for 4WIDS vehicle navigation

Task Description Requirements
TL

1 State update law, velocity bounds 1, 2
TNNN

2 Collision avoidance with arbitrary obstacles 3
TNNN

3 Follow a reference path, Short Trajectory, Smooth motion 4, 5, 6

Table 5.6: Linearized task list of Nullspace MPC for 4WIDS vehicle navigation

Task Description
TL

1 State update law, velocity bounds
TNNN→L

2 Via state VVV tracking
TNNN→L

3 Minimize acceleration and trajectory length

TL
1 :


ppp0 = pppobs,

pppk = pppk−1 + vvvk−1∆t, (k = 1, · · · ,T ).
vvvmin ≤ vvvk ≤ vvvmax, (k = 0, · · · ,T −1).

TNNN→L
2 :


pppa = pppVVV

a

pppb = pppVVV
b

pppc = pppVVV
c

TNNN→L
3 :

{
wacc ·

(
vvvk−vvvk−1

∆t

)2
+wlen ·

(
vk

x
)2

+wlen ·
(
vk

y
)2

(k = 0, · · · ,T −1).

Eq. (5.46) presents the cost function used to search for optimal parameters VVV (represent-
ing via states) through Sampling-based Optimization (SBO). The cost function csbo corre-
sponds to Cost(sss) in Algorithm 5. The definitions of each cost function are described in
Section 4.6.2.

csbo(sss) = wcollisionccollision(sss)+wcmdccmd(sss)

+wdistcdist(sss)+wanglecangle(sss)+wspeedcspeed(sss) (5.46)

90



Algorithm 5 Nullspace MPC Applied to 4WIDS Vehicle Navigation
K: Number of samples;
UUU ,ΣΣΣ: Mean and covariance of sampling distribution;
λ ,Cost: Parameter and cost function for SBO;
R: Reference path;
pppobs← ObserveVehicleState();
for k ← 0 to K−1 :

VVV (k)← SampleViaStates();
sssk← SolveHQP(VVV (k), pppobs); (Algorithm 4)
Ck← Cost(sssk,R);

ρ ←mink[Ck]; ▷ for avoiding numerical instability
η ← ∑K−1

k=0 exp
(
− 1

λ (Ck−ρ)
)

; ▷ normalization factor
for k ← 0 to K−1 : ▷ calculate sample weights

wk← 1
η exp

(
− 1

λ (Ck−ρ)
)

;

VVV ∗←UUU +∑K−1
k=0 wkE

(k); ▷ obtain the optimal via pose
sss∗← SolveHQP(VVV ∗);
uuuvehicle← ConvertTo8DoFVehicleCommand(sss∗);
SendToVehicleActuators(uuuvehicle); ▷ send the control input to vehicle actuators.

5.10.2 Algorithm Description for 4WIDS Vehicle Navigation

This section presents the algorithmic framework of Nullspace MPC, which extends SA-
HQP to a receding horizon formulation. The algorithm consists of sequential steps that
transform a navigation problem into a series of local trajectory optimization tasks. At each
control cycle, the algorithm generates an optimal control sequence for the vehicle while
considering the prioritized tasks defined in Section 5.10.1. The following describes each
step of the algorithm, from state observation to control input generation. The detailed
algorithm is shown in Algorithm 5.

Step 1: Observe Current State

The step 1 involves observing the current state in the Global Frame of the vehicle. The
vehicle state at time t consists of position px, py and heading angle θ in the Global Frame,
along with translational velocity vx,vy and angular velocity ω in the Base Frame.

91



Step 2: Set a Local Goal

Unlike trajectory optimization where the goal state is predetermined, navigation tasks lack
a clear terminal goal state. Instead, a reference path R is given as a sequence of waypoints:

R= {p1,p2, . . . ,pNref} (5.47)

where each waypoint pi = [pi
x, pi

y,θi]
⊤ contains position and orientation information in the

Global Frame. The reference path is generated using the A* algorithm [97] to find the
shortest obstacle-avoiding path reaching a specified goal location.

Nullspace MPC sets a local goal on the reference path R as the ideal terminal state at
the end of the prediction horizon. Given a reference velocity vref, prediction horizon T , and
time step ∆t, the local goal is set at a distance L = vref ·T ·∆t ahead of the current position
along the reference path.

Step 3: Sample Via Poses

Candidate via poses for the vehicle trajectory are sampled randomly. If a probability dis-
tribution with unbounded support is selected and an infinite number of samples are drawn,
the optimal via points will inevitably be included among the sampled candidates. However,
in practical applications with a finite number of samples, it is essential to center the sam-
pling distribution as close as possible to the optimal via points in order to ensure efficient
exploration.

Specifically, a Gaussian distribution is employed with its mean centered on the poses
that would be achieved through ideal reference path tracking (See Fig. 5.12c).

When an ideal via pose on the reference path is pppideal = [pideal
x , pideal

y ,θ ideal]⊤, the prob-
ability distribution of the corresponding via pose is given by:

pppvia ∼N

pideal
x

pideal
y

θ ideal

 ,diag
(

σx cosθ ideal−σy sinθ ideal,σx sinθ ideal +σy cosθ ideal,σθ

) ,

(5.48)
where σx,σy,σθ are the standard deviations of the positions and heading angle, respec-
tively.
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The number of via poses per trajectory represents a trade-off between computational
efficiency and solution accuracy. While increasing the number of via poses may yield more
precise solutions, it also requires a larger number of samples for exploration. A detailed
analysis of the number of via poses is presented in Section 5.9.4.

Step 4: Sample Trajectories Passing Through Via Poses

Smooth vehicle trajectories passing through the sampled via poses are computed using
HQP to satisfy the prioritized linear tasks in Table 5.6. As shown in Fig. 5.12d, smooth
trajectories are computed that pass through the sampled via points. For detailed algorithm
of HQP, refer to Algorithm 4.

Step 5: Evaluate Trajectories and Calculate Weight for Each Sample

The sampled trajectories are evaluated and normalized weights are calculated for each sam-
ple. These weights are used to infer the optimal probability distribution of via points that
minimizes the expected value of the cost csbo defined in Eq. (5.46). This inference process
is called as variational inference, which infers a posterior distribution (Fig. 5.13b) that
minimizes the cost from a prior distribution (Fig. 5.13a) where via points were sampled in
advance. The specific procedure utilizes importance sampling, as detailed in Algorithm 5.

Step 6: Obtain Optimal Trajectory and Control Input

Once the distribution of via points that minimizes the expected cost is obtained, the mean
of this distribution is treated as the optimal via point (See Fig. 5.13c). Finally, the optimal
trajectory passing through these optimal via poses is computed using HQP, which consti-
tutes the optimal solution obtained through Nullspace MPC (See Fig. 5.13d). The obtained
vehicle center velocity is converted to the 8 DoF control input using the method described
in Section 4.4.2, and applied to the vehicle.
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(a) Step 1, current state and reference path (b) Step 2, local goal setting

(c) Step 3, sample via poses (d) Step 4, sample trajectories

Figure 5.12: Visualization of the navigation algorithm with Nullspace MPC (Step 1-4)
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Prior Distribution

(a) Step 5, prior distribution

Posterior Distribution

(b) Step 5, posterior distribution

Optimal Via Poses

(c) Step 6, optimal via poses

Optimal Trajectory

(d) Step 6, optimal trajectory

Figure 5.13: Visualization of the navigation algorithm with Nullspace MPC (Step 5-8)
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(a) Cylinder Garden (Easier Environment) (b) Maze (Harder Environment)

Figure 5.14: Simulation environments for evaluating navigation performance (reproduced
from Chapter 4). The 8 DoF vehicle must navigate through dense obstacle fields and
narrow passages while reaching sequential goals.

5.10.3 Comparison of Navigation Performance Between MPPI and
Nullspace MPC

The navigation performance of MPPI and Nullspace MPC is evaluated through comparative
experiments with 4WIDS vehicles. The objective is to leverage the vehicle’s high degrees
of freedom to achieve efficient and safe navigation through narrow environments. As the
baseline method, MPPI-H is employed, which was proposed in Chapter 4 and achieves a
balance between safety and efficiency through its sampling space switching mechanism.

The simulation environments consist of two maps identical to those used in Chapter
4 (see Fig. 5.14). Each episode requires reaching 10 sequential goals, and 100 episodes
are conducted for each map. The success rate is evaluated as the proportion of episodes
where all goals are reached without any failure. Other metrics are calculated using the
average values from episodes where both MPPI and Nullspace MPC succeed, ensuring
a fair comparison. An episode is considered failed if the vehicle experiences prolonged
immobilization, collision, or loss of position estimation due to tipping. Note that minor
collisions that do not hinder navigation are not considered failures.
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Figure 5.15: Frame-by-frame visualization of 4WIDS vehicle navigation using MPPI-H

The motion patterns of the 4WIDS vehicle exhibit distinct characteristics between the
two control approaches. A significant behavioral divergence emerges when the vehicle
must navigate in a direction opposite to its current orientation (see Figs. 5.15 and 5.16).
MPPI-H employs a sequential approach, it first executes an in-place rotation to align the
vehicle’s orientation with the reference path, followed by forward motion. Nullspace MPC
implements a concurrent strategy, simultaneously translating the vehicle’s center along the
reference path while progressively adjusting its orientation along the reference path. This
simultaneous execution of translation and rotation allows Nullspace MPC to achieve higher
velocities by eliminating orientation-related motion interruptions.

The evaluation results are summarized in Tables 5.7 and 5.8. The performance trends
show similar patterns across both the Cylinder Garden and Maze environments.

Nullspace MPC demonstrates superior performance across three key metrics: Tra-
jectory Length, Episode Time, and Success Rate. In the Cylinder Garden environment,
Nullspace MPC achieves a 13.7% reduction in trajectory length and a 52.1% reduction
in episode time compared to MPPI. In the Maze environment, Nullspace MPC achieves
a 10.7% reduction in trajectory length and a 35.7% reduction in episode time. While
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Figure 5.16: Frame-by-frame visualization of 4WIDS vehicle navigation using Nullspace
MPC

Nullspace MPC maintains perfect 100% success rates in both environments, MPPI achieves
88% in Cylinder Garden and 94% in Maze, indicating occasional navigation failures.

MPPI-H exhibits superior computational efficiency. Both methods maintain real-time
control within the 0.05s control interval, but MPPI-H achieves computation times over 10
times faster than Nullspace MPC. The computational advantage of MPPI-H stems from its
simpler trajectory evaluation process. In contrast, Nullspace MPC requires solving multiple
quadratic programming problems for each sample trajectory, despite its ability to reduce
the sampling space. This computational overhead represents a key limitation that warrants
further investigation.
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Table 5.7: Evaluation Results of 100 Navigation Episodes in Cylinder Garden
bold value: better result

Metric
MPPI-H

(3D(b)/4D)
Nullspace

MPC

Calc. Time [ms] ↓ 3.6 41.9
Trajectory Length [m] ↓ 116.5 100.5

Episode Time [s] ↓ 122.4 58.6
Success Rate [%] ↑ 88 100

Note that minor collisions that do not hinder navigation are not considered failures.

Table 5.8: Evaluation Results of 100 Navigation Episodes in Maze
bold value: better result

Metric
MPPI-H

(3D(b)/4D)
Nullspace

MPC

Calc. Time [ms] ↓ 3.2 39.3
Trajectory Length [m] ↓ 142.5 127.2

Episode Time [s] ↓ 111.9 71.9
Success Rate [%] ↑ 94 100

Note that minor collisions that do not hinder navigation are not considered failures.
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5.11 Discussion and Insights on Q2-β

This chapter presents an enhanced framework addressing research question [Q2-β ] How
can the handling of multiple tasks be enhanced?. The proposed Sampling Augmented
Hierarchical Quadratic Programming (SA-HQP) algorithm decomposes optimization prob-
lems based on task priorities. Extension of this algorithm to a receding horizon framework,
termed Nullspace MPC, enables successful navigation for 8 DoF vehicles. Nullspace MPC
achieves comparable safety performance to MPPI while demonstrating superior navigation
speed through narrow spaces.

In the comparison of one-shot trajectory optimization between MPPI and SA-HQP,
SA-HQP demonstrated superior performance in achieving critical tasks such as reaching
the goal and satisfying the acceleration constraint. MPPI attempts to accomplish multiple
tasks by minimizing a weighted scalar objective function, but this approach becomes in-
creasingly challenging to balance as the number of tasks grows. A significant limitation of
this approach is that when balance adjustment fails, lower-priority tasks can interfere with
the achievement of higher-priority tasks. The SA-HQP approach, which explicitly decom-
poses tasks based on priority levels, guarantees the achievement of important tasks even as
the number of tasks increases. This hierarchical decomposition strategy suggests potential
advantages for multi-objective control problems with many tasks.

A significant limitation of Nullspace MPC lies in its computational complexity. While
the decomposition of optimization problems typically reduces the number of samples com-
pared to MPPI, the requirement to solve multiple Quadratic Programming problems per
sample leads to increased computational overhead.
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Chapter 6

Conclusion

This chapter summarizes the key findings and contributions of this dissertation, and dis-
cusses future research directions.

6.1 Summary of Contributions to All Research Questions

This section revisits the main research question of this dissertation and summarizes the
key findings and contributions that address it. The main research question of this disser-
tation is: [Main Q] How can autonomous driving control be realized to exploit the
performance potential of diversifying mobility systems? Chapter 1 suggests that Model
Predictive Control (MPC) is the most appropriate approach to achieve the research goal,
and the dissertation focused on improving both the prediction and optimization aspects of
MPC.

As for the prediction side, [Q2-α] How can practical prediction models be designed?
is addressed in Chapter 3. The quantitative comparison of path-following performance us-
ing multiple prediction models demonstrates that more complex models do not always
yield better results. Models that ignores tire slip (KAM, KBM) demonstrated superior
path-following performance at low speeds compared to models that explicitly consider tire
slip (DBM, DBM-L). This finding suggests the importance of utilizing appropriately sim-
plified models based on the target task requirements. For models that explicitly consider
slip, a solution was proposed to address the invalidity at zero velocity by modifying the
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function structure. This approach enables the proposed model DBM-L to achieve broader
applicability in low-speed scenarios compared to the original DBM model.

As for the optimization side, [Q2-β ] How can the handling of multiple tasks be
enhanced? is addressed in Chapter 4 and Chapter 5. For narrow-space navigation with
an 8 DoF vehicle, two approaches were implemented: an improved MPPI-based method
and a novel optimization algorithm called Nullspace MPC. Regarding multi-task achieve-
ment, MPPI employs an approach that minimizes a weighted sum of cost functions, while
Nullspace MPC adopts a strategy of dividing the optimization problem using task priori-
ties. The results demonstrate that Nullspace MPC enables faster navigation through narrow
spaces compared to MPPI.

6.2 Discussion and Future Work

This dissertation emphasizes the development of practical MPC prediction models by fo-
cusing on simplified model designs that is complex enough to achieve the target task. Cer-
tain tasks such as vehicle drift control [98,99], however, necessitate precise vehicle dynam-
ics and modeling of tire slip. These implementations remain challenging problems to be
realized in practical applications. One potential solution involves developing technologies
for accurate real-time physical parameter estimation [100,101]. An alternative approach is
to implement motion planning that avoids situations with high prediction uncertainty. For
instance, while predicting vehicle motion on icy roads is difficult, the system can choose
alternative routes with better traction conditions. This represents an integrated approach
combining state estimation and motion planning [102, 103], which will be crucial for ad-
dressing diverse real-world environments.

While Nullspace MPC demonstrated superior performance in narrow-space navigation
for 8 DoF vehicles, its application to more complex control systems(ex. Fig. 6.1) re-
mains challenging within the current framework. Sampling-based approaches for handling
nonlinear tasks provide a powerful means of expanding applicability, but they increase
computational complexity and introduce difficulties in strictly maintaining task priorities.
Therefore, tasks that can be expressed linearly should be solved within the Hierarchical
Quadratic Programming (HQP) framework without relying on sampling when possible.
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Even for nonlinear tasks, it would be beneficial to handle them within the HQP framework
without sampling if appropriate mappings to linear spaces can be established. Learning
such beneficial nonlinear mappings through neural networks represents a highly promising
direction for expanding the applicability of the framework.

(a) Vehicle with a manipulator (b) Legged robot with wheels (c) Legged robot with a manipulator

Figure 6.1: Examples of complex systems with multiple degrees of freedom.
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