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Comparative Study of Prediction Models for Model Predictive
Path-Tracking Control in Wide Driving Speed Range

Mizuho Aoki1, Kohei Honda1, Hiroyuki Okuda1 and Tatsuya Suzuki1

Abstract— This study compares and evaluates the effect of
the choice of the vehicle’s prediction model on the performance
in designing a path-tracking controller for vehicles using Model
Predictive Control (MPC). The Kinematic Ackermann Model
(KAM), the Kinematic Bicycle Model (KBM), and the Dynamic
Bicycle Model (DBM) are well known as nonlinear prediction
models. The stability and tracking performance of these models
are evaluated using simulations, and a newly proposed DBM
improved in Low-speed range (DBM-L) is also compared.

As a result of the simulation, the proposed DBM-L was able
to run in the widest 0 to 120km/h speed range among the models
tested, and it was able to achieve the stop-and-go behavior that
was not possible with the conventional DBM.

In the future, if we can solve the problem that the tracking
accuracy of the DBM-L is slightly decreased in the extremely
low and high speed ranges, a vehicle prediction model that can
be used in all speed ranges is expected to be realized.

I. INTRODUCTION

Autonomous driving technologies have attracted great at-
tention in this decade, and a huge number of innovations are
made as the results of numerous researches and developments
carried out by academia and industry. It is obvious that the
environmental recognition and the localization technologies
turn the guided automatic vehicle control to the autonomous
driving due to the development of LiDAR sensor and the
AI-based image processing technologies. On the other hand,
the motion planning and control are still important as the
fundamental component supporting the overall autonomous
driving system. Control stability and smoothness are critical
issues on the automatic vehicle control not only to realize
reliable autonomous vehicles but also to improve the passen-
gers’ riding comfort.

Another aspect required for the vehicle control for an
autonomous driving system is accuracy. In the context of
autonomous driving, vehicle control is mainly used to track
the local reference generated by the motion planner depend-
ing on the driving task targeted in the driving situation (See
Fig.1). Inaccurate vehicle control may make the planned path
meaningless even if the perfect local reference is generated
to realize safe or comfortable driving. Although this problem
can be solved by tuning the path planner to be robust and
conservative, this approach increases the development or
computational cost of the path planner. In addition, the test or
validation cost for path planner is especially increased since
it is difficult to determine whether the problem is caused by
the vehicle controller or the path planner itself.
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Realization of accurate vehicle control is a basic but still
fundamental concern to reduce the total development cost
for autonomous driving systems. There is much literature
for vehicle control for autonomous driving, such as pure
pursuit [1], rear-wheel position feedback [2] and the look-
ahead control [3] standing on the classic feedback control.
Although these approaches are simple, practical, and well-
known control approaches, they often require a fine adaptive
parameter tuning to realize stable driving in various road
conditions and speeds.

Recently, a real-time optimization-based control method
called model predictive control (MPC) [4] [5] has been
attracting attention. MPC determines the control input by
solving an open-loop optimal control problem (OCP) for a
finite time ahead using a prediction model of the control
target in real-time. The big advantage of MPC is the ability
to impose various constraints on control inputs and states.
As long as the prediction model is given with sufficient
accuracy, MPC computes the optimal input in terms of
the evaluation function of the optimization problem with
satisfying those constraints. Generally speaking, the accuracy
of the prediction model is critical in the MPC controller
design. Since the vehicle model is nonholonomic in nature
and contains various non-linearity, one of MPC design ap-
proaches is applying a linear approximation [6] [7] to the
vehicle model. While linearization leads to the reduction of
the computational cost and make the stability analysis easy,
the performance of path tracking is degraded at the same
time.

In recent years, Nonlinear MPC (NMPC) has been used
to track vehicle paths using nonlinear vehicle models. Typ-
ical models used in nonlinear MPC path-tracking are the
Kinematic Ackermann Model (KAM), the Kinematic Bicycle
Model (KBM), the Dynamic Bicycle Model (DBM) [8] [9],
and so on. Each of these models expresses the lateral motion
of the vehicle under several assumptions. Likewise, it is
necessary to consider the longitudinal motion, and constant
acceleration is often assumed to make the problem simple.
Thus, this paper focuses only on the lateral control, i.e.
steering control, of the vehicle but not the longitudinal
control, i.e. acceleration/deceleration control.

Fig. 1. Flow of autonomous driving



Although path tracking using the above vehicle models
has been tried in much literature [10]–[14], quantitative
comparison between different prediction models are not
carried out for the specified driving task. The clear discussion
and knowledge about which model should be chosen must
accelerate the design of a practical path-tracking controller.

Polack et al. [15] investigated the model accuracy of
the KBM comparing to real car behavior and found that
the prediction error increased with vehicle speed and ac-
celeration. Kong et al. implemented MPC with the KBM
and MPC with the DBM on a real vehicle and compared
the control performance, concluding that the KBM is more
suitable for tracking control in their specified speed range.
These studies are based on real vehicle experiments and
the results are remarkable, however, the tested driving speed
ranges are limited. Demand for the MPC controller is now
extending from a simple highway cruising application to
more various driving tasks including urban driving and the
parking situation. It is necessary to share the knowledge
about which prediction model should be appropriate for a
particular driving speed range through a more comprehensive
comparative study.

This paper presents a comparison of lateral vehicle models
as prediction models in the context of MPC over a wide range
of driving speeds. For the practical application of MPC to
real-world vehicle control, the models are evaluated from
the following perspectives, 1. sufficiently high calculation
speed for practical use, 2. stable over a wide range of driving
speeds for practical use in various driving situations, 3.
stable over a wide tuning range of parameters to achieve the
desired path-tracking characteristics. One contribution of this
study is that these nonlinear models are compared in a com-
mon framework of NMPC using Continuation/Generalized
Minimum Residual (C/GMRES) [16] method to implement
and evaluate them in a practical computational time. In
addition, we also propose a new DBM improved in Low-
speed range (DBM-L) that is improved to prevent the DBM
from diverging in the low-speed region, and evaluate its
effectiveness.

Fig. 2. Geometrical Relationship Between the Coordinates

TABLE I
DEFINITION OF VARIABLES

Variable Definition Value [Unit]
β Slip Angle of Vehicle Body - [rad]

βf , βr Slip Angles of Front, Rear Wheel - [rad]
θF Yaw Angle between the Ref. Path - [rad]

γyaw Yaw Rate of Vehicle Body - [rad/s]
δ Front Wheel Angle - [rad]

ρref Curvature of Ref. Path - [m−1]
θref Yaw Angle of the Ref. in Global Frame - [rad]
Bvy Vehicle Longitudinal Velocity - [m/s]
V Vehicle Velocity - [m/s]
a Vehicle Acceleration - [m/s2]
lf Distance from CG to the Front Axle 1.04 [m]
lr Distance from CG to the Rear Axle 1.56 [m]
m Mass of Vehicle Body 1110 [kg]
Iz Vehicle Moment of Inertia 1343 [kgm2]
Kf Cornering Stiffness of Front Wheel 56023[N/rad]
Kr Cornering Stiffness of Rear Wheel 37942[N/rad]

CG: center of gravity

II. VEHICLE MODELS

A. Definitions of variables and coordinates

First, the variables used to describe the models are defined
in Table I. Before introducing the target vehicle models,
the coordinate systems (Fig.2) used in vehicle models are
defined. Note that this paper focuses only on the lateral
control of the vehicle but not on the performance of speed
nor acceleration control.

1) Global coordinate: The cartesian coordinate system
in a fixed inertial frame to the map of driving scenes.
The position vector in this coordinate is defined as GP =
[Gpx,

G py].
2) Base coordinate: The coordinate fixed on the moving

frame at the position of the center of gravity (CG) of the car.
The position vector in this coordinate is defined as BP =
[Bpx,

B py]. The xG axis direction is the same as the front
of the vehicle.

3) Frenet-Serret coordinate: The coordinate fixed on the
moving frame at the nearest point on the reference path from
the car. The position vector is defined as FP = [F px,

F py].
xF axis aligns with the tangent of the reference path and F px
means the trajectory length from the origin. yF axis aligns
with the reference path, and F py value shows the lateral error
between the car and the reference path.

See reference [17] for details of these coordinate systems.

B. The Kinematic Ackermann Model

The first model tested in this paper is the Kinematic
Ackermann Model (KAM). In conditions where the car
turns along the stable circle at low speed, the Ackermann
Geometry [8] (Fig. 3) exists in the global frame assuming
no wheel slipping in the lateral direction. From geometrical
relationship,

ρ = (lf + lr)/δ, (1a)
γyaw = V/ρ = δV /(lf + lr), (1b)

β = lr/ρ = δlr/(lf + lr). (1c)



Fig. 3. Kinematic Ackermann Model

Fig. 4. Kinematic Bicycle Model

For path tracking, the KAM is transformed into Frenet-
Serret frame as follows:

d

dt
xKAM =

d

dt

[
F py θF

F px V
]T

=


V θF +

lr
(lf + lr)

V δ

−ρrefV +
1

(lf + lr)
V δ

V
a

 . (2)

See [8] for the details of the KAM. Note that the simple
point mass model is used to express the simple longitudinal
dynamics of the car in Eq.(2).

C. The Kinematic Bicycle Model

The motion of the car at low speed can be described as
the Kinematic Bicycle Model(Fig. 4) in an inertial frame.
Driving speed in the global frame can be written as follows:

˙Gpx = V cos(θG + β), ˙Gpy = V sin(θG + β), (3a)

˙θG =
V

lr
sinβ, β = tan−1

(
lr

lf + lr
tan δ

)
. (3b)

For path-tracking control purpose, Eq.(3) is described in
Frenet-Serret frame as follows:

d

dt
xKBM =

d

dt

[
F py θF

F px V
]T

=


V sin(θF + β)

V

lr
sinβ − V ρref

D
cos(θF + β)

V

D
cos(θF + β)

a

 , (4)

where D = 1− ρref
F py .

Fig. 5. Dynamic Bicycle Model

D. The Dynamic Bicycle Model

The Dynamic Bicycle Model (DBM) is a well known
lateral vehicle dynamics model in higher speed range which
considers the effect of wheel slip angles. The equations of
the DBM in the base coordinate can be written as follows:

d

dt

[
Bvy
γyaw

]
=

[
−a11

V
a12

V − V
−a21

V
a22

V

] [
Bvy
γyaw

]
+

[
b1
b2

]
.

(5)

For path tracking, the DBM can be described in Frenet-Serret
coordinate as follows:

d

dt
xDBM =

d

dt

[
F py ˙F py θF θ̇F

F px V
]T

=



˙F py

−a11

V
˙F py + (a11 + a)θF +

a12

V
θ̇F

θ̇F

−a21

V
˙F py + a21θF +

a22

V
θ̇F

V
a


+ ET ρref +BT δ, (6)

where

a11 =
2(Kf +Kr)

m
, a12 = −2(Kf lf −Krlr)

m
, (7)

a21 =
2(Kf lf −Krlr)

Iz
, a22 = −

2(Kf l
2
f +Krl

2
r)

Iz
, (8)

b1 =
2Kf

m
, b2 =

2Kf lf
Iz

, (9)

E =
[
0, ρref (a12 − V 2), 0, a22 − a, 0, 0

]T
, (10)

B = [0, b1, 0, b2 − a, 0, 0]
T
. (11)

E. Improvement of the DBM in low driving speed range

The DBM has the drawback that it is not available at
the driving speed V = 0 because the model contains the
term 1/V , and the accuracy drops in the low speed range.
Therefore, we approximate the 1/V using soft normalization
function [18] as Eq.12, and define the DBM improved in
Low-speed range (DBM-L) as Eq.13 in order to improve its
behavior at extremely low-speed range:

Vinv =
1

V + α ln(1 + exp(−2αV ))
, (12)



Fig. 6. Simulation architecture using MPC

where the constant α = 1.0 is used in this paper. Now the
DBM-L can be described as follows:

d

dt
xDBM−L =

d

dt

[
F py ˙F py θF θ̇F

F px V
]T

=


˙F py

−a11Vinv
˙F py + (a11 + a)θF + a12Vinv θ̇F

θ̇F
−a21Vinv

˙F py + a21θF + a22Vinv θ̇F
V
a


+ ET ρref +BT δ. (13)

III. COMPARISON OF CONTROL PERFORMANCE

A. Tested MPC controller

This paper clarifies the difference in the path-tracking
performance of the MPC controller embedding different pre-
diction models mentioned above. Figure 6 shows a simplified
architecture of the model predictive path-tracking controller.
The normal passenger car (B-class) in Carsim software
(Mechanical Simulation Corp.) including a detailed vehicle
dynamical model is used as the control target.

The optimization problem solved in each control interval
is formulated as follows:

Given:
x̂(0|t) = x(t), xref , Sf , Q, R, (14)

Find:
x̂(k|t), k ∈ ∀{1, . . . , N},
û(k|t) = [δ̂(k|t), â(k|t)]T , k ∈ ∀{0, . . . , N − 1}, (15)

Which minimize:

J = Φ(x̂(N |t)) +
N−1∑
k=0

L(x̂(k|t), û(k|t))∆t, (16)

Φ(x̂(N |t)) = 1

2
(x̂(N |t)− xref)

TSf (x̂(N |t)− xref), (17)

L(x̂(k|t)) = 1

2
(x̂(k|t)− xref)

TQ(x̂(k|t)− xref)

+ û(k|t)TRû(k|t), (18)
Subject to:

x̂(k + 1|t) = x̂(k|t) + ∆t
d

dt
xM (19)

TABLE II
PARAMETERS IN SIMULATIONS

KAM, KBM DBM, DBM-L
∆t 0.01s 0.01s
N 100 100
Sf diag[ 10, 10, 0, 10 ] diag[ 10, 1, 10, 1, 0, 10 ]
Q diag[ 1, 1, 0, 1 ] diag[ 1, 0.1, 1, 0.1, 0, 1 ]
R diag[ 1, 1 ] diag[ 0.1, 1 ]

TABLE III
DRIVING SPEED AND CURVATURE FOR EVALUATION

Case vref [km/h] R [m]
1 5 5
2 10 10
3 20 15
4 30 30
5 40 60
6 50 100
7 60 150
8 80 280
9 100 460
10 120 710

where x(t) is a state vector, Sf , Q, R are weight matrices.
The dimension of x(t) and weight matrices differ depending
on prediction models. The state equation d

dtxM (Eq. 19) is
also replaced depending on the target vehicle model for the
evaluation.

B. Simulation and evaluation

The virtual car in CarSim drives along the reference paths
shown in Fig.7 and 8 by using the MPC controller defined in
the previous subsection. Applied prediction models are var-
ied with the parameters shown in Table II for the evaluation.

Two of evaluation indices, mean value and maximum value
of the lateral tracking error defined as:

Eav =

∫ L

0
|F py|dF px

L
, Emax = max|Fpy|, (20)

are used for the evaluation of control performance.

C. Driving conditions

In this paper, 10 driving speed ranges listed in Table III
(5[km/h] to 120[km/h]) are tested for each prediction model
in order to cover the daily driving scene including low-speed
urban driving and highway driving.

Two test track, (a). a half of oval track (Fig. 7), called
oval-shaped path, and (b). a rectangular wave-like driving
path (Fig. 8), called step-shaped path , are tested to evaluate
the path-tracking performance. In (a), the curvature of the
reference is changed depending on the driving speed as
specified in Table III for the oval-shaped path. The applied
curvature corresponding to a certain speed range is decided
by referring to the standard of maximum curvature for road
construction in Japan. In (b), the reference path is in a
stepping manner to evaluate the step response performance
of the path tracking.



Fig. 7. Oval-Shaped Path
Fig. 8. Step-Shaped Path

D. Setting weight parameters

As the weight matrices in the evaluation function of MPC,
the terminal cost Sf , the stage cost Q, and the penalty to
the input R, are used in this study. In order to improve the
tracking performance, the weight parameters on F py and θF
were set to be large which are about 10 times the weight
parameters on ˙F py and ˙θF , respectively, by trial and error.
In addition, the terminal cost which the penalty of Sf is set
to 10 times the value of Q for each state value in order to
improve the stability of the controller in the receding horizon
manner.

Note that the high accuracy path-tracking can not be
achieved by just increasing the weight parameters on the
lateral deviation F py . Applying extreme penalties to certain
state variable often leads to instability in the case of sudden
reference change or the external disturbance as conventional
state feedback control. In addition, this sometimes leads to
numerical instability in C/GMRES computation.

IV. EVALUATION RESULT

A. Availability of models in the various speed range

Figures 9 to 12 show the control performances of the MPC
path tracking using different prediction models in various
driving speeds. Note that all depicted points show the cases
the car was able to follow the path, and the points are lacking
if the car failed to track the path.

From the results shown below (Figs. 9 to 12), The KAM
and the KBM can follow the reference only in 40 km/h and
below on the oval-shaped path and 50 km/h and below on the
step-shaped path. Note that these controllers were not able to
follow the path even if the parameters in cost functions are
fine-tuned. In contrast, the DBM and the DBM-L can follow
both of the reference paths in all tested driving speed.

Since the DBM-L is equivalent to the DBM in the high-
speed range, the DBM-L is available in a wide speed range
as well as the conventional DBM. It is found that the
DBM-L follows the tendency of the conventional DBM in
the high-speed range from the results. Thanks to the soft
normalization of the 1/V term in the DBM-L, the model
prevents the divergence of the computation in an extremely
low-speed range successfully. As the result, the DBM-L
enables the driving from 0km/h which is not possible with
the conventional DBM. Figure 13 shows the time profiles of
the states in a oval-shaped path tracking with 5km/h starting
from a stop state (V = 0 km/h).

As the summary of model comparison, Tab. IV classified
the evaluation of each model regarding the availability and
accuracy. From the results, the proposed DBM-L is the most
applicable among the tested models in this study. Although
the DBM-L shows the availability in all driving speed range,
the tracking accuracy of the DBM and the DBM-L are
degraded in the low-speed range compared to the KAM and
the KBM. This result implies that the KAM and the KBM
are suitable in the low-speed range if the MPC controller
can be switched, and the DBM-L is a better option if the
one MPC controller must cover the wide range of driving
speed including stop-and-go. Another concern on the DBM
and the DBM-L is that the accuracy in high-speed ranges are
degraded compared to the medium speed range. In particular,
as seen in Figure 10, both the DBM and the DBM-L have a
relatively large tracking error of more than 1m when driving
on the oval-shaped path at 120km/h. In this comparative
study, the parameters in vehicle models nor the controller
are not tuned depending on the driving speed for a fair
comparison, however, the fine parameter tuning should be
necessary to realize accurate path tracking in high-speed
driving.

B. Computation time

The computation time of the optimization problem solved
in each control frame are shown in Tab. IV. The computation
time with the conventional DBM shows a larger value
compared to the KAM and the KBM because the DBM has
more state variables. On the other hand, the computational
time with the DBM-L was smaller than that of the DBM.
This is not natural because the DBM-L has the same dimen-
sion as the conventional one and includes a complex soft
normalization function in it. We did not find the reason for
this result at the moment, and it is necessary to dive into the
detail of the numerical computation in C/GMRES method in
order to investigate the reason in future work.

C. Control frequency setting

One of the benefits to introduce MPC controller is the
prediction of the future state trajectory. If the control period
and the number of prediction steps are increased, the input
can be optimized by looking at longer future predictions.
This emphasizes the advantage of MPC to cope with sudden
changes in the path. On the other hand, it may also cause
a decrease in tracking performance. Increasing the control
period often causes instability of the behavior, especially
in the DBM which handles the differential equations of
the vehicle dynamics. The simple Euler approximation was
used for the discretization of the DBM and the DBM-L
in this paper and it is found that these models become
unstable as the control period gets longer. Introduction of the
bilinear transform or Lunge-Kutta algorithm may overcome
these drawbacks by improving the prediction accuracy of the
model.

In addition, the extension of the prediction horizon can
also lead to numerical instability and too long prediction
horizon is meaningless obviously because the prediction



Fig. 9. Eav of Oval-Shaped Path [m]

Fig. 10. Emax of Oval-Shaped Path [m]

model can never perfectly predict the real vehicle behavior
to be controlled. On the contrary, if the prediction interval
is too short, the advantage of feed-forward control of MPC
is lost and the behavior becomes similar to that of standard
state feedback control.

The applied length of the prediction horizon and the
control interval were determined by trial and error in this
study, but it may be necessary to change the length depending
on the type of the prediction model, the accuracy of the
sensor, the route to be followed, and the speed range when
the MPC is applied to a real vehicle.

1) Parameter tuning: Tuning of the weight parameters in
the cost function of the optimization problem, which are R,
Q and Sf , is an important process in the controller design
too. The parameters must be adjusted depending on the
objective of the targeted driving task by taking a balance
between the path-tracking accuracy and the riding comfort.
From this viewpoint, it is desirable if the parameter setting
can be determined independent of which model is applied to
the prediction model. It is found that the fact that the MPC
with either the KAM or the KBM could not follow in the
high-speed range did not change even if different parameter
sets were tried. Similarly, the DBM and the DBM-L were
able to follow in various settings of these weight parameters.
This implies that the stability itself does not improve by
changing the cost function if the accuracy of the prediction
model is poor, and it is natural considering the stability

Fig. 11. Eav of Step-Shaped Path [m]

Fig. 12. Emax of Step-Shaped Path [m]

Fig. 13. Simulation Result using DBM-L and start from a V = 0km/h

analysis of the state feedback system. This also implies that
the weight parameters can be adjusted more freely when the
DBM and the DBM-L are used as the prediction model in
the wide speed range in order to realize the desirable balance
between the path tracking error and the smoothness of the
behavior.

V. CONCLUSIONS

This paper approached the automatic path-tracking control
using a model predictive controller (MPC) and clarified the
availability of the various prediction models in order to
accelerate the development and the research of autonomous
driving system. The conventional prediction models of lateral
vehicle dynamics, the Kinematic Ackermann Model(KAM),



TABLE IV
EVALUATION OF EACH VEHICLE MODEL

Evaluation Items KAM KBM DBM DBM-L

Tracking
Accuracy

Low speed A A C B
Mid. speed C C A A
High speed D D B B

Ave. Calculation Time [ms] 0.219 1.011 1.684 0.573
Num. of Physical Parameters 2 2 5 5

The evaluations in the table are defined as follows:
A : High-accuracy tracking is possible in the speed range,
B : Tracking is possible in the speed range,
C : Tracking is possible only in a part of the speed range,
D : Tracking is impossible in the speed range.

the Kinematic Bicycle Model (KBM), and the Dynamic
Bicycle Model (DBM), are tested in order to investigate
the differences in the path tracking accuracy of the MPC
controllers in various driving speed ranges. the DBM im-
proved in Low-speed range (DBM-L) is proposed in order
to overcome the drawbacks in the low-speed range of the
conventional DBM and compared to other prediction models.

C/GMRES method was implemented in order to realize
the real-time calculation of the nonlinear MPC including
nonlinear prediction model.

As a result, it is found that the KAM and the KBM can
be used only in a relatively low-speed range. The result is
consistent with the conventional literatures which say that
these models have less model accuracy in high-speed driving.

On the other hand, the DBM and the DBM-L can be used
in a wide range from 5km/h up to 120km/h. In particular,
the DBM-L proposed in this study enables the path tracking
control including the stop-and-go situation thanks to the
normalization in the extreme low-speed range, while also
inheriting the advantages of the DBM in middle to high-
speed ranges. This model can be considered as the most
suitable prediction model to be used among the models tested
in this study when the MPC must cover all the driving speed
range.

On the other hand, the tracking performances of both
the DBM and the DBM-L deteriorates in the high-speed
range (especially at 120 km/h) compared to those of middle-
speed range (20km/h to 100km/h). The improvement of
the accuracy of the DBM-L and the total path tracking
performance in the high-speed range is one of our future
works.

Another future work is how to improve the path track-
ing performance in the low-speed range. There are two
approaches for this problem, first one is to improve the
DBM-L so that it can predict low-speed range, and another
is to consider the smooth switching mechanism between the
multiple vehicle models such as the DBM-L and the KAM.
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[15] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible tra-
jectories for autonomous vehicles?” in 2017 IEEE Intelligent Vehicles
Symp. (IV). IEEE, 2017, pp. 812–818.

[16] T. Ohtsuka, “A continuation/gmres method for fast computation of
nonlinear receding horizon control,” Automatica, vol. 40, no. 4, pp.
563–574, 2004.

[17] Y.-l. Liao, M.-j. Zhang, and L. Wan, “Serret-frenet frame based on path
following control for underactuated unmanned surface vehicles with
dynamic uncertainties,” Journal of Central South University, vol. 22,
pp. 214–223, 01 2015.

[18] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Rie-
mannian motion policies,” 2018.


	for_arxiv_publication_iv2021
	_Conf__IV2021_Aoki

