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Obstacle Avoidance Control Based on Nonlinear MPC
for All Wheel Driven In-Wheel EV in Steering Failure
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Abstract— Self-driving electric vehicles are becoming pop-
ular, and the demand for safer driving systems is increasing.
Electric vehicles equipped with in-wheel motors (EV-IWM) can
independently control the torque generated by each of the four
wheels. This strong feature makes them suitable for advanced
collision avoidance in emergencies. To handle the many control
outputs needed to control such vehicles, most conventional
research works used rule-based and hierarchical controllers.
However, such constraints for making the control easier are
considered to degrade the performance.

This study presents nonlinear model predictive control
(NMPC) -based method that can consider the detailed vehicle
dynamics without overall linear approximation to maximize the
control performance. The effectiveness of our proposed scheme
is demonstrated by simulating obstacle avoidance in the case
of steering failure. The recently published proximal averaged
Newton-type method for optimal control (PANOC) is used as
an optimization solver that reduces the computation time and
enables real-time control.

The obstacle avoidance task is one example of the utilization
of control redundancy. In the future, other tasks such as energy-
efficient driving or improving riding comfort are expected to
be realized with our proposed scheme.

I. INTRODUCTION

Autonomous driving technology has been developed in
recent years. As technology becomes more widely used,
more sophisticated safety features are required. There are
several components of autonomous driving technology, such
as recognition, decision-making, and control. Among them,
vehicle control is especially important in terms of ensuring
safety in emergencies by avoiding obstacles.
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Electric vehicles equipped with in-wheel motors (EV-
IWM) can independently control the torque of each of the
four wheels (See Fig.1), which enables them to achieve
motion control that is not possible with conventional steer
controlled vehicles. EV-IWM is a redundant system because
there are several ways to turn vehicles by controlling the
steering input and tuning the balance of generated wheel
torques. Redundancy not only contributes to the flexibility
of the motion control but also the safety in the sense that the
vehicle can change course even if the steer operation does
not work. However, because of the redundant and multiple
control outputs, torque distribution control is difficult. In
the past, direct yaw-moment control (DYC) was proposed
as a method focused on the control of yaw-moment, and
rule-based approaches were used [1] [2] [3]. Although it
works stably, there is a concern that the performance is
not maximized owing to the constraints. Optimization-based
methods are effective to solve this issue. Controllers such
as the linear quadratic regulator (LQR) [4] [5] and the
linear model predictive controller (LMPC) [6] [7] have been
proposed in the past, but linearized models still reduce the
performance because of approximation effects.

The nonlinear model predictive control (NMPC) is a
promising method for dealing with complex control systems.
The advantages of NMPC are 1. applicable to nonlinear
multiple-input and multiple-output (MIMO) systems, 2. abil-
ity to consider constraints, 3. flexibility to set multiple
achievement goals by setting an evaluation function to be
optimized appropriately. For the above reasons, there is much
literature which approaches path tracking [8] and obstacle
avoidance control [9] [10] using NMPC. In most cases,
approximated models such as Dynamic Bicycle Model [11]
[12] are used to express vehicle behavior to easily achieve

Fig. 1. Overview of the System Architecture



TABLE I
DEFINITION OF VARIABLES

Variable Definition Value [Unit]
Gpx,G py X/Y axis of Global frame - [m]
Bpx,B py X/Y axis of Base frame - [m]
F px,F py X/Y axis of Frenet-Serret frame - [m]

θF Yaw Angle between the Ref. Path - [rad]
β Slip Angle of Vehicle Body - [rad]
γ Yaw Rate of Vehicle Body - [rad/s]
δ Front Wheel Angle - [rad]
T Torque generated by a tire. - [Nm]

ρref Curvature of Ref. Path - [m−1]
θref Yaw Angle of the Ref. in Global Frame - [rad]
Bvy Vehicle Longitudinal Velocity - [m/s]
V Vehicle velocity - [m/s]
ax Longitudinal acceleration - [m/s2]
ay Lateral acceleration - [m/s2]
lf Distance from CoG to the Front Axle 1.04 [m]
lr Distance from CoG to the Rear Axle 1.56 [m]

df , dr Front / Rear tread 2.082 [m]
m Mass of vehicle body 1270 [kg]
Iz Inertia of vehicle yaw moment 1343 [kgm2]
H Height of CoG 0.540[m]
R Tire radius 0.3[m]
e, f Tire parameter coefficients 4.15, 855.0
g Gravitational acceleration 9.807 [m/s2]

CoG: center of gravity

autonomous driving with NMPC. Recently, however, some
literature was successful in handling detailed vehicle models
considering the forces on all four tires [13] [14].

This paper presents an NMPC controller (Fig.1) for obsta-
cle avoidance using EV-IWM. Our proposed method incor-
porates a full vehicle model into NMPC instead of using a
rule-based torque distributor and linearized vehicle dynamics
model as in the conventional methods. As a result, it is
possible to achieve optimal obstacle avoidance behavior with
flexibility in using redundant control outputs. In particular,
we demonstrate that obstacle avoidance is possible by using
only tire torque for control, even in case of steering failure.

Our scheme also has the following features that make
it easy to use in practical applications. 1. the proximal
averaged Newton-type method for optimal control (PANOC)
[15] is introduced as an optimization problem solver to
reduce computation time and achieve real-time control. 2.
Modify the vehicle dynamics model and use wheel torques
for control output instead of slip rates for easier practical
use, because a torque generated by a motor can be easily
calculated from the input electric current value. 3. Introduce
time-state control [16] [17] to express obstacle locations as
relative positions to the reference trajectory.

II. FULL VEHICLE MODEL IN NMPC

To achieve high-performance obstacle avoidance, a non-
linear full vehicle model [13] is introduced as a prediction
model of NMPC. In the following, this vehicle model is
derived using the frenet-serret coordinate system shown in
Fig.2. Please refer to [8] for details. All definitions of the
variables in the following are shown in Table. I.

First, assuming that the road surface is flat, the load on

Fig. 2. Geometrical Relationship Between the Coordinates

Fig. 3. Tire Load

each wheel Fz∗∗ can be calculated as follows:
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where, mf = mlr/(lf + lr), ml = mlf/(lf + lr) and
the definitions of the the variables are shown in Table. I.
Next, each tire slip angle is derived from the geometric
relationships by

βfl = tan−1

(
V sinβ + lfγ

V cosβ − dfγ
2

)
− δ, (5)

βfr = tan−1

(
V sinβ + lfγ

V cosβ +
dfγ
2

)
− δ, (6)

βrl = tan−1

(
V sinβ − lrγ

V cosβ − drγ
2

)
, (7)

βrr = tan−1

(
V sinβ − lrγ

V cosβ + drγ
2

)
. (8)

The lateral and longitudinal forces generated by each tire are
given by

Fy∗∗ = −(e · Fz∗∗ + f)β∗∗ (9)
Fx∗∗ = T∗∗/R (10)



Fig. 4. Four Wheel Model

where, ** is replaced by the indices fl (front-left), fr (front-
right), rl (rear-left), and rr (rear-right) indicating each tire,
respectively. e, f are parameters for expressing cornering
stiffness as a function of Fz∗∗, and R is a tire radius.

The state vector of the MPC controller for EV-IWM is

x = [F py, θF , V, γ, β, ax, ay], (11)

where the state equations for the state variables are given as
follows:

dF py/dt = V cosβ sin θF + V sinβ cos θF , (12)

dθF /dt = γ − ˙F pxρref , (13)

dF px/dt =
V cosβ cos θF − V sinβ sin θF

1− ρFrefpy
, (14)

dV/dt = ay sinβ + ax cosβ, (15)
dβ/dt = (ay cosβ − ax sinβ)/V − γ, (16)
dγ/dt = (lf ((Fxfl + Fxfr) sin δ) + (Fyfl + Fyfr) cos δ)

+ df (Fxfr − Fxfl) cos δ)/2 + df (Fyfl − Fyfr) sin δ/2

− lr(Fyrl + Fyrr) + dr(Fxrr − Fxrl)/2)/Izz, (17)

Because it is impossible to obtain all state variables at once
from the equations, ax and ay are taken from the previously
given values. The derivatives of ax and ay are obtained by
assuming a first-order delay system. It is unlikely to cause
practical problems if the time delay Tdelay is small enough.
Tdelay = 0.05[s] is used in this study.

ãx =
1

m
(−Fyfl sin δ − Fyfr sin δ

+ Fxfl cos δ + Fxfr cos δ + Fxrl + Fxrr) (18)

ãy =
1

m
(Fyfl cos δ + Fyrl cos δ

+ Fyrl + Fyrr + Fxfl sin δ + Fxfr sin δ) (19)

dax/dt =
1

Tdelay
(ãx − ax) (20)

day/dt =
1

Tdelay
(ãy − ay) (21)

This study uses time-state control [16] [17] to simply
describe the location of obstacles. Let ξ be the state variable,
then the conversion of the time-axis state control is expressed

by the following chain rule.

dξ

dF px
=

dξ

dt

dt

dF px
=

dξ

dt
/
dF px
dt

(22)

III. VEHICLE CONTROLLER BASED ON NMPC

A. Formulation of optimization problem for NMPC

Since the driving torque input for all four motors and
the steering angle can be controlled independently, the all-
wheel-driven (AWD) vehicle is over-actuated and redundant.
This study utilizes model predictive control to determine the
distribution of the driving force for each tire and steering
angle directly. In the case of applying the controller to a real
system, it is necessary for the in-wheel motors to follow the
given torque commands.

The optimization problem solved in each control interval
in NMPC is formulated as follows, putting F px with s for
the convenience of visibility,

Given: (23)

x̂(0|s) = x(s) = [F py, θF , V, γ, β, ax, ay], (24)
xref = [0, 0, Vref , 0, 0, 0, 0], (25)
Sf , Q, R, , R′, Cx, Cy, Cr, Nobj , Wobj , δmax, Tmax,

Find:
x̂(k|s), ∀k ∈ {1, . . . , N},
û(k|s) = [δ̂(k|s), T̂fl(k|s), T̂fr(k|s), T̂rl(k|s), T̂rr(k|s)]T ,
∀k ∈ {0, . . . , N − 1}, (26)

Which minimize:

J = Φ(x̂(N |s)) +
N−1∑
k=0

L(x̂(k|s), û(k|s))∆s, (27)

Φ(x̂(N |s)) = 1

2
(x̂(N |s)− xref)

TSf (x̂(N |s)− xref), (28)

L(x̂(k|s)) = 1

2
(x̂(k|s)− xref)

TQ(x̂(k|s)− xref)

+ û(k|s)TRû(k|s)
+ (û(k|s)− û(k − 1|s))T R′ (û(k|s)− û(k − 1|s))
+ P (x̂(k|s)), (29)

P (x̂(k|s)) =
Nobj∑
j=1

Wobj

(F px(k|s)− Cjx)2 + (F py(k|s)− Cjy)2
,

(30)
Subject to:

x̂(k + 1|s) = x̂(k|s) + dx

ds
∆s, (31)

|δ| < δmax, (32)
|Tfl|, |Tfr|, |Trl|, |Trr| < Tmax, (33)

C2
r −

(
(px∗∗ − Cjx)

2 + (py∗∗ − Cjy)
2
)
< 0, (34)

where x(s) is a state vector defined by (11), Sf , Q, R and
R′ are the weight matrices. J is the cost function to be
minimized, which consists of stage cost L, terminal cost Φ,
and potential field penalty P . See Table.I for the definitions
of the variables.



Fig. 5. Obstacle Avoidance Situation

Hard constraints (34) work to guarantee that the vehi-
cle never collides with obstacles. Moreover, the artificial
potential field (APF) [18] added to the stage cost allow
the vehicle to drive keeping certain distances away from
obstacles. Wobj in Eq.(30) is a parameter that determines
the level of influence of obstacles, and the value shown in
Table.II is used in this study.

Note that ** indicates every four points of the vehicle body
rectangle. It is assumed that the vehicle does not collide if
all of the four points are outside the circular areas of the
obstacles.

B. Implementation of NMPC

One of the difficulties when applying NMPC is how
to solve the optimization problem in real-time. This study
uses the proximal averaged Newton-type method for optimal
control (PANOC) [15] as an optimization solver. It is a com-
bination of the proximal gradient method and quasi-Newton
method so that most optimization problems of NMPC are
calculated much faster than other methods such as sequential
quadratic programming and the interior point method. We
use OpEn [19], a wrapper of PANOC for implementation.
PANOC is a method for unconstrained optimization, How-
ever, OpEn can handle constraints using the penalty function
method [20]. For this reason, the constraints in eqs.(32)–(34)
are handled as penalty functions.

IV. OBSTACLE AVOIDANCE SIMULATION

In this section, two types of simulations are implemented.
The first one (Section. IV-B) is an obstacle avoidance task
using both steer and each four tire torque, and the other one
(Section. IV-C) is emergency avoidance behavior in the case
of a steering failure. The full vehicle model (Section. II) in
the Global frame is used as a simulator with the assumption
that the time delay is 0 [s] in following the reference value
of torque generation.

A. Problem settings

The target task is set as obstacle avoidance as shown in
Fig.5 in the simulation. The vehicle tries to follow the given
straight reference path as closely as possible while avoiding
two circular obstacles. The radius Cr and positions of the
two obstacles (C∗x, C∗y) are defined as follows.

Cr = 2.0 [m]

PA(CAx, CAy) = (10 [m],−1.5 [m])

PB(CBx, CBy) = (25 [m], 1.5 [m])

TABLE II
COMMON PARAMETERS IN SIMULATIONS

Control interval 0.05 [s]
∆t 0.05 [m]
N 50 [step]
Vref 6.95 [m/s] (25 [km/h])
Wobj 45.0 [-]

The initial values of the state variables is x(0) =
[F py, θF , V, γ, β, ax, ay] = [0.5, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0].
The parameters in Table.II are used in both cases
with/without the steering input. The simulations were done
using the Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz,
RAM 24.0 GB.

TABLE III
PARAMETERS IN SIMULATION WITH STEERING INPUT

Sf diag [0, 0, 1, 10−3, 10−7, 10−3, 10−3]
Q diag [7.5, 0.5, 1, 10−8, 10−7, 10−3, 10−3]
R diag [0.0, 10−5, 10−5, 10−5, 10−5]
R′ diag [0.1, 10−5, 10−5, 10−5, 10−5]

δmax 30 [deg]
Tmax 1000[Nm]

TABLE IV
PARAMETERS IN SIMULATION WITHOUT STEERING INPUT

Sf diag [0, 0, 1, 10−3, 10−7, 10−3, 10−3]
Q diag [7.5, 0.5, 1, 10−8, 10−7, 10−3, 10−3]
R diag [0, 5× 10−8, 5× 10−8, 5× 10−8, 5× 10−8]
R′ diag [0.1, 10−4, 10−4, 10−4, 10−4]

δmax 0 [deg]
Tmax 1000[Nm]

B. Obstacle avoidance simulation with steering input

First, obstacle avoidance with steering input is tested
using the parameters listed in Table.III. In this scenario,
the vehicle successfully avoided the obstacles. See Fig. 6
to check the simulation result. Basically, the vehicle turned
itself using steering input. The torque inputs were mainly
used to accelerate the car to follow the reference velocity.
This is because steering input has a greater influence on
the vehicle motion, and is more effective in reducing the
penalty in terms of the cost function. However, right tire
torques are slightly larger than left ones where the vehicle
is right in front of the obstacle A. This means that torque
distribution also contributes to generate yaw-moment of the
vehicle, especially in severe situations where it is difficult to
make a turn by steering input alone.

C. Obstacle avoidance simulation without steering input

Next, obstacle avoidance without steering input is tested
setting parameters in Table.IV. The vehicle was successful
in avoiding collisions even though steering input is always
zero as shown in Fig.7. Comparing the results between Fig.6
and Fig.7, much higher torque input was needed to avoid
collision without steering input. This is a natural way to
change the direction of the vehicle, and it is possible to use
the torque of each tire completely and skillfully it can be seen



Fig. 6. Obstacle Avoidance (With Steering Input)

that obstacle avoidance is realized with torque distribution
alone. Since the turning performance is reduced when turning
without steer, the closest distance from the obstacle is smaller
than in the case with normal steering input. The bottom
figure in Fig. 7 is helpful to grasp how the torque allocation
contributes to the vehicle motion. If the torque generation of
the left tires are larger, the vehicle gets yaw-moment to turn
right, and the opposite is also true (See Fig.8.) The larger
the difference in torque generated by the left and right tires,
the larger the rotational moment given to the car.

D. Discussion

The proposed scheme of this study was confirmed to be
suitable to achieve obstacle avoidance behavior with/without
steering input. While there are several controllers proposed
to consider the torque allocation in rule-based manners, our
scheme is beneficial because there is no need to prepare
another controller to switch the turning on/off steering input;
instead, it is achieved by changing the δmax constraint.
One of the major advantages of using MPC is that there
is no need to prepare a reference trajectory planned to avoid
obstacles. Hence, adding another obstacle on the road is
also easy; this scheme is flexible and can be expanded to

Fig. 7. Obstacle Avoidance (Without Steering Input)

complex roadway conditions. While NMPC is expected to
achieve high performance in many cases, handling complex
prediction models often leads to a higher computational cost.
This study solved this problem by introducing a relatively
new optimization solver named PANOC, and achieved to
run the simulation in real-time. Fig.9 shows the computation
time of the simulations. In both scenarios, the calculation
time is much smaller than the control interval 0.05 [s] (See
Fig. 9.)

On the other hand, there remains some issues to be solved.
See steering input result in the Fig. 6. A sudden change of the
steering input was observed at around X = 19 [m], where the
vehicle faces the obstacle B. Theoretically, this phenomenon
could be solved by increasing the length of the prediction
horizon. However, extension of the prediction horizon in-
creases the difficulty of the optimization. Achieving a system
that works stably while making long predictions is an issue
to be overcome in the future.

This study focuses on the obstacle avoidance behavior and
fail-safe operation in a case of steering failure, other tasks
such as reducing the energy consumption and improving
riding comfort is considered to be applicable as a mean of
utilizing redundancy. Achieving these goals is a topic for



Fig. 8. Vehicle Turn with Torque Distributions

Fig. 9. Computation Time

future research.

V. CONCLUSIONS

This study proposed a scheme to exploit the maximum
performance of EV-IWM. It is based on a nonlinear MPC
to accurately consider complex vehicle dynamics. Generally,
the application of NMPC for this system is limited by
computation costs that are too heavy for practical use.
However, we introduced an optimization solver referred to
as PANOC and achieved real-time control. The simulations
of the obstacle avoidance were successful in both cases
with and without steering input. These results indicate that
the redundancy of EV-IWM contributes significantly to safe
driving in the context of facilitating emergency avoidance in
a steering failure situation. In the future, other tasks such as
energy-efficient driving or the improvement of riding comfort
will be achieved by making the best use of the vehicle’s
flexibility.
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