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Switching Sampling Space of Model Predictive Path-Integral Controller
to Balance Efficiency and Safety in 4WIDS Vehicle Navigation

Mizuho Aoki1, Kohei Honda1, Hiroyuki Okuda1, and Tatsuya Suzuki1

Abstract— Four-wheel independent drive and steering vehicle
(4WIDS Vehicle, Swerve Drive Robot) has the ability to move
in any direction by its eight degrees of freedom (DoF) control
inputs. Although the high maneuverability enables efficient
navigation in narrow spaces, obtaining the optimal command
is challenging due to the high dimension of the solution space.
This paper presents a navigation architecture using the Model
Predictive Path Integral (MPPI) control algorithm to avoid
collisions with obstacles of any shape and reach a goal point.
The key idea to make the problem easier is to explore the
optimal control input in a reasonably reduced dimension that is
adequate for navigation. Through evaluation in simulation, we
found that the selecting sampling space of MPPI greatly affects
navigation performance. In addition, our proposed controller
which switches multiple sampling spaces according to the real-
time situation can achieve balanced behavior between efficiency
and safety. Source code is available at https://github.
com/MizuhoAOKI/mppi_swerve_drive_ros.

I. INTRODUCTION

Four-wheel independent drive and steering (4WIDS) ve-
hicles have the potential to enhance the level of vehicle
motion as a next-generation power transmission system for
automobiles [1] [2]. 4WIDS is capable of independently
controlling the steering angle and drive torque of all four
wheels, enabling holonomic movements such as pivoting in
place and diagonal movement. In particular, unlike other
types of holonomic robots (e.g., omnidirectional wheels
and mecanum wheels robots), steerable vehicles can drive
on rough terrain and maintain high-speed stability [2]–[4].
However, due to its high-dimensional input space (i.e., eight
degrees of freedom), control can be challenging. In addition,
smooth steering control is required to avoid mechanical
failures.

In general, gradient-based Model Predictive Control
(MPC) is one of the effective approaches for redundant
systems, where the input dimension is larger than the state
dimension [3], [5], [6]. However, gradient-based MPC has
challenges such as the inability to handle non-differentiable
cost functions (e.g., cost map) or the possibility of converging
to local minima in nonlinear problems. Therefore, sample-
based MPC approaches that do not rely on gradients, such
as the Model Predictive Path Integral control (MPPI) [7],
are practically promising and used for a wide variety of
applications [8]–[17].

When applying MPPI to redundant systems, the dimension
of the input space is a critical issue. The larger the dimension
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Fig. 1: 4WIDS vehicles can achieve various types of motion, such
as moving diagonally and turning in place. Our navigation
architecture makes good use of these capabilities to achieve
efficient and stable navigation in narrow spaces avoiding
obstacles.

of the input space, the more pronounced the curse of dimen-
sionality becomes. This means that the number of samples
required to adequately cover the input space increases ex-
ponentially, resulting in a significant decrease in sampling
efficiency. How to avoid the curse of dimensionality and
apply MPPI efficiently remains a critical issue in controlling
redundant systems.

In this paper, we focus on analytically constraining the in-
put space of 4WIDS through geometric constraints, allowing
for the application of MPPI to a reduced-dimensional input
space. As a result, we can avoid the aforementioned curse of
dimensionality and maintain the sample efficiency of MPPI
while controlling 4WIDS. To the best of our knowledge, this
is the first study to apply MPPI to 4WIDS.

The primary contribution of this work is three-fold. First,
we derive that it is possible to reduce the original eight-
dimensional input space of 4WIDS to three dimensions
by applying static geometrical constraints. However, our
experiments revealed an insight that the three-dimensional
control input space degrades the stability of navigation.

Therefore, as a second contribution, we demonstrate that
controlling 4WIDS is more effective with a slightly redundant
input space than with the bare minimum of three dimensions.
Specifically, we opted to apply MPPI to a four-dimensional
input space that includes redundancy, instead of sticking to
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the minimal three dimensions. As a result, our empirical
simulation results proved to enhance the success rate of
navigation tasks.

Third, as a final contribution, we propose an approach
to switch the control input space in real-time, depending
on the situation. The hybrid sampling showed balanced
performance to achieve both efficiency and a high success
rate in navigation tasks.

II. RELATED WORK

A. Conventional Control Approaches for 4WIDS

A simple way to control a 4WIDS vehicle is by limiting
its degrees of freedom with adding constraints. In [18], a
constraint is added that the front steering angle is the negative
of the rear steering angle and applied pure-pursuit algorithm
for path tracking. This approach is easy to understand and
computationally efficient, but it is not suitable for utilizing
the vehicle’s maneuverability.

Fuzzy logic is a powerful tool to handle full vehicle input
space by preparing multiple driving modes and switching
them according to the situation [19]. However, it requires
a high level of domain knowledge to design each mode
and the predefined rules are difficult to deal with unknown
environments.

To guarantee the stability of the system in any situation,
the Lyapunov function is used to design the control law [20],
[21]. Stable path tracking can be achieved, but considering
other tasks such as smooth steering and obstacle avoidance
is challenging for the framework.

Since considering various goals and constraints can
broaden the scope of applications, Model Predictive Control
(MPC) has been widely used, which predicts the future
state of the target system and gets the optimal control input
minimizing a cost function [3], [5], [6]. Despite its high
flexibility, MPC is computationally expensive. To achieve
real-time control, using a gradiant-based optimization solver,
linear approximation of the vehicle model, or assuming an
accurate reference trajectory are practical strategies.

However, to perform practical local planning that smoothly
avoids obstacles of arbitrary shape, complex optimization
problems including non-convex and non-differentiable for-
mulation are essential, which is difficult to handle with con-
ventional methods. This paper introduces a sampling-based
solver to expand the scope of MPC-based approaches and
aims to achieve more general navigation tasks in cluttered
environments.

B. Applications of Sampling-based MPC for Redundant Sys-
tems

Sampling-based MPC is a powerful tool to control redun-
dant systems and has been applied to various complex control
problems.

The simplest algorithm is to sample several control se-
quences and evaluate them to find the best one. Complex
systems such as humanoid robots and quadrupedal robots
can be controlled by a simple algorithm [17]. However, this

approach has low sample efficiency and the behavior is likely
to be jerky.

Using the MPPI algorithm can enhance the sample effi-
ciency and generate smoother behavior. Manipulators with
high degrees of freedom can successfully avoid obstacles
[16], and stable manipulation is achieved even when the sys-
tem model is uncertain [15]. Combination with reinforcement
learning has also been studied [22]. Learning environment
dynamics and exploring the solution in the latent space
successfully operated a 38-DoF control target.

While the application of MPPI is expanding, there is
still little knowledge about how to choose the sampling
space to explore the solution effectively. This paper aims
to provide a new insight into the sampling space selection
with comparative experiments and theoretical analysis.

III. TARGET TASK DESCRIPTION

The goal of our system is to navigate a 4WIDS vehicle
to a given goal while avoiding collision with surrounding
obstacles (Fig. 2). We assume that a global planner generates
a reference trajectory, which is a sequence of positions
and orientations in a 2D plane. Therefore, the main focus
of our study is to design a local planner that generates a
vehicle motion to follow the reference trajectory while safely
avoiding obstacles. The local planner sends an eight DoF
vehicle command consisting of a wheel speed and a steering
angle for each wheel to the vehicle actuators. Especially in
our navigation environment where the obstacles are densely
distributed, the high maneuverability of 4WIDS vehicles,
such as small turning radius and diagonal movement, is key
to achieving smooth and efficient driving.

Fig. 2: Navigation task

IV. MODELING OF 4WIDS VEHICLE MOTION

To achieve accurate vehicle control, it is important to
understand the characteristics of vehicle motion. In this
section, we formulate the model of 4WIDS vehicle behavior,
mainly used for sampling future vehicle poses in our model
predictive controller.

A. 4WIDS Vehicle Dynamics

Although it is a straightforward approach to model vehicle
behavior using Newton’s laws of motion, our study does not
focus on this approach. To formulate the full vehicle dynam-
ics, it is necessary to consider the eight tire forces generated
by the four wheels, as shown in Fig.3. However, to obtain
the forces, it is necessary to observe tire slip angles, tire slip
ratios, and tire physical parameters, which are not easy to



Fig. 3: Relationship between spaces; Dynamics(8DoF) can be simplified to Kinematics(3DoF) with assuming no tire slip. Two types of
sampling space are tested in this study; u3DoF and u4DoF to compare the navigation performance. Both spaces can be converted
to the vehicle command space uvehicle with conversion matrix Cn→8(n ∈ {3,4}) and nonlinear projection fv.

measure accurately in real-world applications [23]. Even if
we have true dynamics and explore the full eight-dimensional
input space, most of the solutions will include large tire slips,
which cause unstable vehicle behavior. Therefore, predicting
vehicle motion with full dynamics is not always practical,
especially for real-world applications.

B. 4WIDS Vehicle Kinematics

An efficient way to easily model the vehicle motion is to
focus on vehicle kinematics [21]. Essentially, the difficulty
of controlling 4WIDS vehicles comes from the redundancy
of the control degrees of freedom, which means that there
are multiple solutions to achieve a certain vehicle behavior.
The kinematic formulation adds assumptions that the vehicle
is moving at a constant velocity, and the tire slip is negli-
gible. The assumptions can be interpreted as a reduction of
the control input space and focusing on considering more
practical vehicle motion.

Under the kinematic assumptions, the vehicle’s motion can
be simplified as a model with three degrees of freedom u3DoF
; longitudinal velocity Vx, lateral velocity Vy, and angular
velocity ω of the vehicle center. The relationship between the
vehicle center velocity u3DoF and the eight-wheel velocities
ufull is formulated as follows and shown in Fig.3.

u3DoF = [Vx,Vy,ω]T , (1)

ufull = [Vx f l ,Vx f r,Vxrl ,Vxrr,Vy f l ,Vy f r,Vyrl ,Vyrr]
T , (2)

ufull = C3→8 u3DoF, (3)

C3→8 =



1 0 −dl
1 0 dr
1 0 −dl
1 0 dr
0 1 l f
0 1 l f
0 1 −lr
0 1 −lr


. (4)

The wheel velocity ufull can be converted to the vehicle com-
mand space uvehicle consisting of four-wheel steering angles
δ∗ and four-wheel velocities V∗ for the front left (fl), front
right (fr), rear left (rl), and rear right (rr) wheels. A nonlinear

transformation function fv is used for the conversion,

uvehicle = [δ f l ,δ f r,δrl ,δrr,Vf l ,Vf r,Vrl ,Vrr]
T , (5)

uvehicle = fv(ufull), (6)

δ∗ = arctan
Vy∗
Vx∗

, (7)

V∗ =
√

V 2
x∗+V 2

y∗, (8)

where ∗ represents the wheel positions fl, fr, rl, rr.
Note that the kinematic formulation only requires the

geometric relationship of the tires which is easy to obtain,
and is easily applicable to real-world applications.

C. Exploring Solution in Redundant Control Input Space
Sampling based controller needs to get a variety of so-

lutions from the control input space u3DoF. In this study,
we found that exploring a slightly redundant space u4DoF
and converting it to u3DoF was more effective in achieving
smooth and stable vehicle motion with MPPI. This idea is
inspired by methods such as Koopman Operator [24] and
Dynamic Mode Decomposition [25], which expand the state
space to express the complex dynamics as a linear system in
a higher dimensional space.

Since u4DoF is a 4-dimensional redundant space, it does
not always satisfy kinematic constraints formulated in Eq.(3).
Therefore, projection matrix C4→8 is used to map u′4DoF to
uvehicle, so that the sampled vehicle motion always satisfies
the kinematic constraints.

u4DoF = [Vf l ,Vrr,δ f l ,δrr]
T , (9)

u′4DoF = f (u4DoF)

= [Vf l cosδ f l ,Vrr cosδrr,Vf l sinδ f l ,Vrr sinδrr]
T

= [Vx f l ,Vxrr,Vy f l ,Vyrr]
T , (10)

uvehicle = C4→8u′4DoF, (11)
C4→8 = C3→8C4→3, (12)

C4→3 =


dr

dl+dr

dl
dl+dr

0 0

0 0 lr
l f +lr

l f
l f +lr

−1
2(dl+dr)

1
2(dl+dr)

0 0

 . (13)

The conversion to reduce a dimention in Eq.(13) is based on
the idea of taking the average of the control inputs between
front wheel space (Vf l ,δ f l) and the rear wheel space (Vrr,δrr)
to obtain the compromised vehicle center angular velocity ω .



Fig. 4: Overview of the control architecture (See Section V-A). (a) global planner generates a reference trajectory based on current
vehicle pose and the given map, (b) MPPI generates the optimal control input in a reduced dimensional space, (c) the n DoF

(n ∈ {3,4}) control input is converted to the 8DoF vehicle command space, and (d) the vehicle actuators execute the command.

V. NAVIGATION ARCHITECTURE
FOR 4WIDS VEHICLE

A. System Overview

The navigation system for the 4WIDS vehicle is composed
of four main components below in this work (See Fig.4)

1) State Observation: The map of the environment is
given, and the vehicle localizes itself using 2D LiDAR point
cloud data and odometry information.

2) Global Path Planning: The global planner calculates
a path from the current vehicle position to the goal using
Dijkstra’s algorithm.

3) Local Path Planning: In this work, a Model Predictive
Path-Integral Controller (MPPI) is used to plan the local path
and calculate the next optimal control input. Since exploring
the full vehicle command space which has eight degrees of
freedom is difficult and inefficient, MPPI samples solutions
in a dimension that is reasonably reduced by kinematic
constraints such as u3DoF and u4DoF defined in Section IV.

4) Vehicle Command Calculation: Since MPPI calculates
the control input in a reduced dimension, the control input
is converted to the 8DoF vehicle command and sent to the
vehicle actuators. The optimal control input calculated by
MPPI is converted to the 8DoF vehicle command and sent
to the actuators. The conversion is done by Eq.(4), (13) and
(8) in Section IV.

B. Algorithm of MPPI Controller

In this study, local planning is performed using the Model
Predictive Path-Integral (MPPI) Controller shown in Algo-
rithm 1. MPPI is an optimal control algorithm that uses
a sample-based approach to compute the optimal control
input sequence in the near future. The algorithm is based on
the idea of sampling the control input sequences as normal
distributions centered at the previous optimal input sequence,
and getting the optimal sequence as weighted sum so that
better sequences are heavily weighted and vice versa.

For a discrete-time, continuous state-action system xt =
F(x,u), K samples of input sequences V = {vt}T−1

t=0 are
generated by adding Gaussian noise to mean control input
sequence U = {ut}T−1

t=0 with covariance matrix Σ. After
preparing the samples, the optimal control input sequence

is easily obtained by calculating the weighted sum of the
samples. The stage cost function c(x,u) and terminal cost
function φ(x) are defined to evaluate the quality of the
samples. Let Sk be the total cost of the k-th sample whose
input sequence is Vk, the weight for the sequence is

w(Vk) =
1
η

(
− 1

λ
S(Vk)+λ

T−1

∑
τ=0

uT
t Σ
−1vt −ρ

)
(14)

where η is the normalization factor, λ is the constant
temperature parameter, and ρ is the minimum cost among
the samples.

The notable benefits of MPPI are that it can be applied
to a wide range of optimization problems, including non-
linear, non-convex, and non-differentiable cost functions and
system models. The algorithm is theoretically guaranteed to
minimize the forward Kullback-Leibler (KL) divergence be-
tween the proposed distribution and the optimal distribution
which minimizes the total cost function.

C. MPPI Switching Multiple Control Spaces

Through analysis of the experimental results in Section VI-
D, we found that selecting the control input space to explore
the solution affects the navigation performance significantly.
To take advantage of the strengths and mitigate the weak-
nesses of each control input space, we propose a method
to switch between multiple spaces in real time according
to the situation explained in Algorithm 2. If two control
input spaces are defined as uA and uB, both spaces need
to update the control input sequence in each time step as
a preparation for the next calculation. The conversion func-
tions ConvertToSpaceA and ConvertToSpaceB are needed to
convert the control input sequence to the other space. If we
switch u3DoF to u4DoF, the conversions are done using Eq.(4),
(13), and (8) in Section IV.



Algorithm 1 Model Predictive Path-Integral Controller

Given: F, g: Transition Model;
K: Number of samples;
T: Number of timesteps;
U ← (u0,u1, . . . ,uT−1): Initial control sequence;
Σ,φ ,c,γ,λ ,α,∆t: Cost functions and parameters;
while task not completed do

x0← ObserveSystemState()
for k = 0 to K-1 do

x← x0;
Sample E= (εk

0 . . .ε
k
T−1), ε ∈N(0,Σ);

for t = 1 to T-1 do
if k < (1−α)K then

vt−1 = ut−1+εk
t−1; ▷ samples for exploitation

else
vt−1 = εk

t−1; ▷ samples for exploration
x← F(x,g(vt−1),∆t) ;
Sk+= c(x,u)+ γuT

t−1Σ−1vt ▷ add stage cost
Sk+= φ(x) ▷ add terminal cost

ρ ←mink[Sk];
η ← ∑

K
k=1 exp

(
− 1

λ
(Sk−ρ)

)
;

for k = 0 to K-1 do
wk← 1

η
exp
(
− 1

λ
Sk
)

; ▷ calculate sample weights

for t = 0 to T-1 do
U ←U +

(
∑

K
k=1 wkE

k) ; ▷ calculate weighted sum
uvehicle← ConvertTo8DoFVehicleCommand(u0);
SendToVehicleActuators(uvehicle);
for t = 1 to T-1 do

ut−1← ut ; ▷ shift the control sequence
uT−1← Initialize(uT−1);

Algorithm 2 MPPI Switching Multiple Control Input Spaces

UA
0 ← (uA

0 , . . . ,u
A
T−1): Initial control sequence of space A;

UB
0 ← (uB

0 , . . . ,u
B
T−1): Initial control sequence of space B;

while task not completed do
mode ← SelectMode(); ▷ select control input space
if mode is A then

UA
t+1← SolveMPPI(UA

t );
UB

t+1← ConvertToSpaceB(UA
t+1);

else if mode is B then
UB

t+1← SolveMPPI(UB
t );

UA
t+1← ConvertToSpaceA(UB

t+1);

VI. EXPERIMENTS

A. Simulation Setup

To evaluate the navigation performance of the proposed
architecture, we set up a simulation environment using
Gazebo simulator. Two types of fields are prepared, ”Cylin-
der Garden” and ”Maze” (Fig. 5). The vehicle need to reach
10 goals sequentially in a episode as fast as possible while
avoiding densely placed obstacles. The four wheel positions
are set symmetrically as l f = lr = dl = dr = 0.5 [m] (Fig. 3).

Our evaluation system was developed using ROS and C++.
Calculation is performed on a desktop computer with an
Intel Core i7-13700KF CPU and 32GB of RAM. For faster
computation, we used CPU multi-threading with OpenMP

(a) Cylinder Garden (Easier) (b) Maze (Harder)

Fig. 5: Simulation environment

[26].

B. Cost Formulation for MPPI

In this section, the cost functions c(x,u) and φ(x) (See
Algorithm 1 are defined for the MPPI controller.

The stage cost c(x,u) is defined as the weighted sum of
the following terms,

c(x,u) = 40 cdist(px, py)+30 cangle(θ)+10 cspeed(v)

+50 ccollision(px, py)+ ccmd(u), (15)

where px and py are the vehicle’s position, θ is the vehicle’s
yaw angle, and v is the vehicle’s velocity. cdist(px, py),
cangle(θ), and cspeed(v) are quadratic error from the ref-
erence path and constant target velocity vdes, respectively.
ccollision(px, py) is a binary cost function that returns 1 if the
vehicle is in collision, and 0 otherwise;

ccollision(px, py) =

{
0 if no collision
1 if collision

. (16)

ccmd(u) is used to smooth the vehicle actuator commands.
In either control space u3DoF or u4DoF to be explored, it can
be converted to 8-dimensional vehicle actuator commands
uvehicle with equations Eq.(3) and (11). With previous vehicle
command uprev

vehicle in the control sequence, minimizing the
penalty term

ccmd(u) = ∥uvehicle−uprev
vehicle∥2 (17)

can smooth the vehicle actuator commands.
the terminal cost φ(x) is added only for preventing reverse

driving,

φ(x) = 50 φgoal(px, py), (18)

where φgoal(px, py) is the quadratic error from the goal
position.

C. Preparing MPPI Controllers for Comparison

To investigate the characteristics of the MPPI controller
depending on the choice of the control space, MPPI-3D
and MPPI-4D are prepared to explore two different control
spaces, u3DoF and u4DoF.

Since the variance parameter affects the controller’s be-
havior, setting the variance of the control space carefully
is important for fair comparison. Changing the variance



TABLE I: Evaluation Results of 100 Navigation Episodes
blue value is the best score, and red value is the worst score of all four controllers.

Field Cylinder Garden Maze

Method MPPI-3D(a)
[Vx,Vy,ω]

MPPI-3D(b)
[Vx,Vy,ω]

MPPI-4D
[Vf l ,Vrr,δ f l ,δrr]

MPPI-H
3D(a) / 4D

MPPI-3D(a)
[Vx,Vy,ω]

MPPI-3D(b)
[Vx,Vy,ω]

MPPI-4D
[Vf l ,Vrr,δ f l ,δrr]

MPPI-H
3D(b) / 4DControl Space

Cost [-] ↓ 3241.7 1900.5 1455.8 2425.4 10030.4 3918.8 2452.3 2887.6
Calc. Time [ms] ↓ 24.1 23.0 27.6 26.6 19.7 19.9 24.0 21.0

Steering Rate [rad/s] ↓ 4.5 3.1 3.6 4.0 6.0 3.6 5.0 3.5
Wheel Acc. [m/s2] ↓ 5.03 3.36 4.08 4.98 6.02 3.77 4.85 4.02

Trajectory Length [m] ↓ 51.9 46.0 40.8 42.6 72.1 64.8 55.2 55.3
Episode Time [s] ↓ 36.4 41.3 38.4 31.2 49.6 55.9 52.1 44.8
Success Rate [%] ↑ 76 89 100 99 33 58 98 96

TABLE II: MPPI Params

Param Value Unit

K 3000 sample
T 30 step
∆t 0.033 sec
α 0.1 -
λ 250 -
γ 6.25 -

TABLE III: Controller Params

Param Value Unit

Control Interval ∆ti 0.05 sec
Target Velocity vdes 2.00 m/s
Max. Velocity vmax 2.00 m/s
Max. Yawrate ωmax 1.58 rad/s
Max. Steering Angle 1.58 rad

TABLE IV: MPPI Variance Params

Name Control Space Variance Σ

MPPI-3D(a) [Vx,Vy,ω] [1.00,1.00,0.78]
MPPI-3D(b) [Vx,Vy,ω] [0.55,0.55,0.96]

MPPI-4D [Vf l ,Vrr,δ f l ,δrr] [1.00,1.00,0.78,0.78]

parameters, two types of MPPI-3D are prepared, MPPI-
3D(a) and MPPI-3D(b). The variance parameters of MPPI-
3D(a) and MPPI-4D are set systematically as shown in
Table IV following the rule that the variance is half of the
maximum value of the control space defined in Table III.
This consideration is to explore a wide range of the control
space, as the normal distribution contains about 95% of the
data within twice the standard deviation.

Another approach is to fit a normal distribution numer-
ically close to the sampled results of MPPI-4D. MPPI-
3D(b) follows this procedure, and the variance parameters
are calculated with maximum likelihood estimation of the
normal distribution, when the vehicle is stopped and all the
steering angles are zero in the space of u4DoF.

Additionally, a hybrid MPPI controller, MPPI-H, is pre-
pared to switch between MPPI-3D and MPPI-4D depending
on the situation. From the verification results, we determined
that the mode selection should be based on the target path
tracking error. The mode switching function in Algorithm 2
is defined as follows with constant parameter dthresh = 0.3 [m]
and θthresh = 0.3 [rad],

SelectMode()

=

{
u3DoF if cdist(px, py)< dthresh and cangle(θ)< θthresh

u4DoF otherwise
.

(19)

D. Definition of Evaluatioin Metrics

Here the evaluation metrics are defined to compare the per-
formance of the MPPI controllers. All metrics are calculated
for all episodes, and the mean value is used for evaluation.

1) Cost: ”Cost” is the sum of stage cost and terminal cost
of optimal trajectory output from MPPI. This metric indicates
how well the MPPI controller can minimize the cost function
and get close to the optimal behavior.

2) Vehicle Command Change: To evaluate the smoothness
of the vehicle actuator commands, two metrics are defined.
”Steering Rate” is the absolute value of the steering angular
velocity. ”Wheel Acceleration” means the absolute change
of the wheel velocity. For both metrics, the mean values of
four wheels are used for evaluation.

3) Navigation Efficiency: two metrics are defined to eval-
uate the navigation efficiency. ”Trajectory Length” is selected
to evaluate how the vehicle could reach the goal with a short
path. ”Episode Time” is also used to know how fast the
vehicle could reach the goal.

4) Success Rate: Success rate is the percentage of
episodes that the vehicle reached all the given goal points.
Collision with obstacles and getting stuck in the field are
major factors of failure.

E. Evaluation Results Comparison

100 episodes of navigation are performed for each field,
and the evaluation results are shown in Table I. For each
MPPI controller, the mean calculation time is less than 30ms
and works in real-time with the control interval ∆ti = 50 [ms].
Even though the cost function and algorithmic parameters
are common, the results drastically changed by exploring
different control spaces.

MPPI-3D(a) has a short episode time, which means it
can drive efficiently. A lower success rate (76% in Cylinder
Garden, 33% in Maze) means that it fails to complete
episodes frequently, and has difficulty in safe and stable
navigation. Since MPPI-3D(b) has a smaller variance in the
vehicle velocity space than MPPI-3D(a), it moves slowly and
appears more conservative behavior. The episode time is the
worst among the four controllers in both fields. However,
the success rate is only slightly improved (89% in Cylinder
Garden, 58% in Maze) from MPPI-3D(a) and still has low
stability.

On the other hand, MPPI-4D showed an extremely high
success rate (100% in Cylinder Garden, 99% in Maze) and



stable navigation behavior. Cost and trajectory length are
the best among the four controllers, it means that MPPI-
4D is good at finding the optimal solution. Comparing the
episode time in Cylinder Garden, MPPI-4D (38.4s) is faster
than MPPI-3D(b) (41.3s), but MPPI-3D(a) (36.4s) surpasses
MPPI-4D in terms of driving efficiency.

Summarizing the characteristics of MPPI-3D and MPPI-
4D, MPPI-3D is good at high-speed driving but has low
stability, and MPPI-4D is more conservative and is good at
stable navigation but has lower efficiency. Then it is reason-
able to switch control spaces depending on the situation to
balance the efficiency and stability. In the case the vehicle
is in a difficult situation (i.e. the target path tracking error
is large), MPPI-4D is selected to ensure stable navigation.
Otherwise, MPPI-3D is selected to drive efficiently.

As a result, the hybrid MPPI-H switching control spaces
showed the best episode time (31.2s in Cylinder Garden,
44.8s in Maze), keeping the high success rate (99% in
Cylinder Garden, 96% in Maze) compared to MPPI-4D. The
fact that MPPI-H has no worst score in any of the metrics
is also evidence that MPPI-H has a balanced performance.

F. Trajectory Comparison

To understand the characteristics of the controllers more
deeply, the trajectories of the four controllers are compared
in Fig. 6. This example scenario is a hard situation where
the vehicle receives the next goal point and needs to turn
sharply.

In Fig. 6, the MPPI-3D(b) turns with a larger radius
than the other controllers, and a part of the trajectory is
close to the collision with surrounding obstacles. It is a
typical dangerous behavior and shows the reason of the lower
success rate of MPPI-3D controllers.

On the other hand, MPPI-4D can turn in a small radius and
run safely keeping a distance from the obstacles, showing the
reason of the high success rate of MPPI-4D.

In the situation where the vehicle should turn sharply,
MPPI-H activates MPPI-4D to drive carefully, resulting in
the same turning behavior as MPPI-4D.

VII. DISCUSSION

In this section, we discuss why the performance changes
by selecting control input space for sampling. Specifically,
explanation of why the solution search in the control space
u4DoF is more likely to find a more optimal solution than in
u3DoF is provided.

In the navigation task, one of the most difficult situation is
when the next goal point is specified in the opposite direction
to the vehicle’s heading. In this case, the optimal behavior is
to quickly decelerate the vehicle and rotate the vehicle body
to the target direction.

Here we consider the Jacobian matrices JA,JB with respect
for the projection from each control input space u3DoF,u4DoF
to the vehicle command space uvehicle. The Jacobian matrices
are normalized to the range of -1 to 1 and plotted as color
maps in Fig.7.

Fig. 6: Trajectory comparison of a difficult situation.
While MPPI-3D shows dangerous behavior close to the
collision, MPPI-4D and MPPI-H drive safely with turning
in a small radius.

Fig. 7: Jacobian matrices comparison between u3DoF and u4DoF
when δ f l = δ f r = δrl = δrr = 0.25π [rad],

V f l =V f r =Vrl =Vrr = 0.7 [m/s].
JB has a more sparse structure than JA, which makes the
optimal solution search easier.

As for the control input space u3DoF, deceleration of the
vehicle speed Vx is strongly affects the vehicle steering
angles. Therefore, even if a control sequence that includes
a rapid deceleration is sampled, it is likely to be penalized
due to the large change in the steering angle. As a result, the
deceleration behavior is less likely to occur and the vehicle
tries to rotate with the current speed, which sometimes causes
collision with obstacles.

On the other hand, as for the control input space u4DoF,
the Jacobian matrix JB has a more sparse structure than JA.
This means that the change in the vehicle speed and the



steering angles are relatively independent. This feature makes
the optimal solution search easier, and more likely to find the
better solution including rapid deceleration and rotation of
the vehicle at the same time.

From the above discussion, it can be considered that the
sparsity of the Jacobian matrix is one of the guidelines for
selecting the control input space for MPPI.

VIII. CONCLUSION

This paper presented a navigation framework for four-
wheel independent driving and steering (4WIDS) Vehicle
based on the Model Predictive Path-Integral (MPPI) control
method. For efficiently solving the optimal control prob-
lem for high-dimensional systems, two types of reasonably
reduced control spaces are introduced. Evaluation results
show that the control space which has a slightly redundant
dimension than the bare minimum can achieve more stable
navigation. In addition, our novel approach that switches the
control space in real-time can achieve both efficiency and
stability at a high level.

Although this work offered a new perspective on how to
choose an effective sampling space, devising a systematic
method to find it is the next step. In addition, implementing
the proposed method on a real platform is needed to verify
its effectiveness in real-world environments.
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